Answer on Question #68959 – Math – Linear Algebra

Question

Find the equation of the line passing through the point A(1, 0, -1) and parallel to the line joining B(1, 2, 3) and C(-1, 2, 0). Is it perpendicular to the line $(1 + 3\alpha, 0, 1 - 2\alpha)$?

Solution

- 1) Note that the line passing through B(1, 2, 3) and C(-1, 2, 0) has the direction vector $\vec{s} = \overrightarrow{BC} = \overrightarrow{(x_c x_B, y_c y_B, z_c z_B)} = \overrightarrow{(-1 1, 2 2, 0 3)} = \overrightarrow{(-2, 0, -3)};$
- 2) The equation of the line passing through the point $A(x_0, y_0, z_0)$ and parallel to the line with direction vector $\vec{s} = (\overline{m, n, p})$ has the canonical form:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

and the parametric form:

$$\begin{cases} x = x_0 + m\alpha, \\ y = y_0 + n\alpha, \\ z = z_0 + p\alpha. \end{cases}$$

We have A(1, 0, -1), $\vec{s} = \overline{(-2, 0, -3)}$, substituting one gets

$$\frac{x-1}{-2} = \frac{y-0}{0} = \frac{z-(-1)}{-3};$$

$$l: \frac{x-1}{-2} = \frac{y-0}{0} = \frac{z+1}{-3}.$$

3) The line $(1 + 3\alpha, 0, 1 - 2\alpha)$ has the next parametric form:

$$\begin{cases} x = 1 + 3\alpha, \\ y = 0, \\ z = 1 - 2\alpha. \end{cases}$$

After reducing this form to the canonical equation

$$l_1: \frac{x-1}{3} = \frac{y-0}{0} = \frac{z-1}{-2}.$$

We note that the line has the direction vector $\vec{s}_1 = \overline{(3, 0, -2)}$.

4) The line l with the direction vector s is perpendicular to the line l_1 with the direction vector s_1 iff the scalar product is

$$s \cdot s_1 = 0$$
.

Note that

$$s \cdot s_1 = m \cdot m_1 + n \cdot n_1 + p \cdot p_1 = -2 \cdot 3 + 0 \cdot 0 + (-3) \cdot (-2) = -6 + 6 = 0$$
, so line l is perpendicular to the line l_1 .

Answer:
$$l: \frac{x-1}{-2} = \frac{y-0}{0} = \frac{z+1}{-3}$$
; it is perpendicular to the line $(1 + 3\alpha, 0, 1 - 2\alpha)$.
Answer provided by https://www.AsignmentExpert.com