Answer on Question \#68959 - Math - Linear Algebra

Question

Find the equation of the line passing through the point $A(1,0,-1)$ and parallel to the line joining $B(1,2,3)$ and $C(-1,2,0)$. Is it perpendicular to the line $(1+3 \alpha, 0,1-2 \alpha)$?

Solution

1) Note that the line passing through $B(1,2,3)$ and $C(-1,2,0)$ has the direction vector $\vec{s}=\overrightarrow{B C}=\overrightarrow{\left(x_{C}-x_{B}, y_{C}-y_{B}, z_{C}-z_{B}\right)}=\overrightarrow{(-1-1,2-2,0-3)}=\overrightarrow{(-2,0,-3)}$;
2) The equation of the line passing through the point $A\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the line with direction vector $\vec{s}=\overrightarrow{(m, n, p)}$ has the canonical form:

$$
\frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p}
$$

and the parametric form:

$$
\left\{\begin{array}{l}
x=x_{0}+m \alpha \\
\mathrm{y}=\mathrm{y}_{0}+n \alpha, \\
z=z_{0}+p \alpha
\end{array}\right.
$$

We have $A(1,0,-1), \vec{s}=\overrightarrow{(-2,0,-3)}$, substituting one gets

$$
\begin{aligned}
& \frac{x-1}{-2}=\frac{y-0}{0}=\frac{z-(-1)}{-3} \\
& l: \frac{x-1}{-2}=\frac{y-0}{0}=\frac{z+1}{-3}
\end{aligned}
$$

3) The line $(1+3 \alpha, 0,1-2 \alpha)$ has the next parametric form:

$$
\left\{\begin{array}{l}
x=1+3 \alpha \\
y=0, \\
z=1-2 \alpha
\end{array}\right.
$$

After reducing this form to the canonical equation

$$
l_{1}: \frac{x-1}{3}=\frac{y-0}{0}=\frac{z-1}{-2} .
$$

We note that the line has the direction vector $\vec{s}_{1}=\overline{(3,0,-2)}$.
4) The line l with the direction vector s is perpendicular to the line l_{1} with the direction vector s_{1} iff the scalar product is

$$
s \cdot s_{1}=0
$$

Note that

$$
s \cdot s_{1}=m \cdot m_{1}+n \cdot n_{1}+p \cdot p_{1}=-2 \cdot 3+0 \cdot 0+(-3) \cdot(-2)=-6+6=0,
$$

so line l is perpendicular to the line l_{1}.
Answer: $l: \frac{x-1}{-2}=\frac{y-0}{0}=\frac{z+1}{-3}$; it is perpendicular to the line $(1+3 \alpha, 0,1-2 \alpha)$.

