## Answer on Question \#68869 - Math - Statistics and Probability

## Question

1. A certain shop repairs both audio and video components. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that $P(A)=0.6$ and $P(B)=0.05$. What is $P(B \mid A)$ ?

## Solution

We have that B is contained in A , then $A \cap B=B$ and

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(B)}{P(A)}=\frac{0.05}{0.6}=\frac{1}{12} \approx 0.0833
$$

Answer: $P(B \mid A)=\frac{1}{12} \approx 0.0833$.

## Question

2. Each of 12 refrigerators of a certain type has been returned to a distributor because of an audible, high-pitched, oscillating noise when the refrigerator is running. Suppose that 7 of these refrigerators have defective compressor and the other 5 have less serious problems. If the refrigerators are examined in random order, let X be the number among the first 6 examined that have a defective compressor. What is the probability that X exceeds its mean value by more than 1 standard deviation?

## Solution

It is hypergeometric probability distribution with $N=12, n=6, M=7, N-M=5$. The distribution is given by

$$
P(X=r)=\frac{\binom{M}{r}\binom{N-M}{n-r}}{\binom{N}{n}}
$$

The expectation (mean) and variance of the Hypergeometric random variable are given by

$$
\begin{gathered}
E(X)=\mu=n p \text { and } V(X)=n p(1-p) \frac{N-n}{N-1}, \\
\text { where } p=\frac{M}{N}
\end{gathered}
$$

Hence
$p=\frac{7}{12}$;
$E(X)=\mu=6\left(\frac{7}{12}\right)=\frac{7}{2}=3.5 ;$
$V(X)=\sigma^{2}=6\left(\frac{7}{12}\right)\left(1-\frac{7}{12}\right)\left(\frac{12-6}{12-1}\right)=\frac{35}{44}$.
Standard deviation is

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{35}{44}} \approx 0.8919
$$

The probability that X exceeds its mean value by more than 1 standard deviation is $P(X>\mu+\sigma)=P(X>3.5+0.8919)=P(X>4.3919)=P(X \geq 5)=$
$=P(X=5)+P(X=6)=\frac{\binom{7}{5}\binom{5}{6-5}}{\binom{12}{6}}+\frac{\binom{7}{6}\binom{5}{6-6}}{\binom{12}{6}}=$
$=\frac{\frac{7!}{5!(7-5)!}(5)+\frac{7!}{6!(7-6)!}(1)}{\frac{12!}{6!(12-6)!}}=\frac{\frac{7(6)}{1(2)}(5)+7}{\frac{12(11)(10)(9)(8)(7)}{1(2)(3)(4)(5)(6)}}=\frac{4}{33} \approx 0.1212$.
Answer: $P(X>\mu+\sigma)=\frac{4}{33} \approx 0.1212$.

## Question

3. Evaluate $(x-2)!(y-4)$ if $x=6$ and $y=9$.

## Solution

Substitute 6 for $x$ and 9 for $y$

$$
(6-2)!(9-4)=4!(5)=1(2)(3)(4)(5)=120=5!
$$

Answer: 120.

