Answer on question \#68630, Math / Other

Question Find the coordinates of the foot of the perpendicular from $(-2,6)$ on the line $2 \mathrm{x}+3 \mathrm{y}-1=0$

Solution Let us first find equation of line perpendicular to given line through given point. So we have line

$$
\begin{gathered}
2 x+3 y-1=0 \\
y=-2 / 3 x+1 / 3
\end{gathered}
$$

Obviously, slope of the perpendicular line will be $3 / 2$. Then we can find the whole equation:

$$
y=k x+b
$$

by substituting given point:

$$
\begin{gathered}
6=3 / 2(-2)+b \\
b=9
\end{gathered}
$$

Hence, equation of perpendicular is

$$
y=3 / 2 x+9
$$

Now we can find coordinates of point we need as common point of lines

$$
\begin{gathered}
y=-2 / 3 x+1 / 3 \\
y=3 / 2 x+9
\end{gathered}
$$

So we find its coordinates:

$$
\begin{gathered}
-2 / 3 x+1 / 3=3 / 2 x+9 \\
8 \frac{2}{3}=2 \frac{1}{6} x \\
x=4 \\
y=15
\end{gathered}
$$

So answer is $(4,15)$.

