Let V be the subspace of P_{3} spanned by the the following set

$$
\left\{1-x^{2}+x^{3}, 2+x-x^{2}+x^{3}, 1+2 x+x^{2}-x^{3}\right\}
$$

a) Show that $f(x)=x+x^{2}-x^{3} \in V$.
b) Show that $g(x)=1+x-x^{2}+x^{3}$ is not an element of V.
c) Find a basis for V which contains $f(x)$.
d) Find a basis for P_{3} which contains $\mathrm{g}(\mathrm{x})$.

Solution:

a)

$$
\begin{aligned}
{\left[\left[\mathrm{v}_{1}\right] \quad\left[\mathrm{v}_{2}\right] \quad\left[\mathrm{v}_{3}\right] \quad[\mathrm{f}]\right]=} & {\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
-1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right] \rightarrow }
\end{aligned} \rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 1 & 2 & 1 \\
0 & -1 & -2 & -1
\end{array}\right] \rightarrow+\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text {. }
$$

Column [f] is not a pivot column, so $f(x) \in V$
b)

$$
\begin{aligned}
{\left[\left[\mathrm{v}_{1}\right] \quad\left[\mathrm{v}_{2}\right] \quad\left[\mathrm{v}_{3}\right] \quad[\mathrm{g}]\right]=} & {\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 \\
-1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 1 & 2 & 0 \\
0 & -1 & -2 & 0
\end{array}\right] \rightarrow } \\
& \rightarrow\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Column [g] is a pivot column, so $\mathrm{g}(\mathrm{x}) \notin \mathrm{V}$
c) Columns [f] and [v_{1}] are pivot columns of the matrix [[f] [$\left.\left.\mathrm{v}_{1}\right] \quad\left[\mathrm{v}_{2}\right] \quad\left[\mathrm{v}_{3}\right]\right]$. So $\mathrm{f}(\mathrm{x})$ and $\mathrm{v}_{1}(\mathrm{x})$ form a basis for V .
d) Any three vectors of the standard basis together with $\mathrm{g}(\mathrm{x})$ form a basis for P_{3}.

