Answer on Question \#68373- Math - Differential Equations.

Question: Form partial differential equation of $u=f(x-3 y)+g(2 x+y)$.
Solution: We will look for the PDE in the form

$$
\alpha u_{x x}+\beta u_{x y}+\gamma u_{y y}=0,
$$

where α, β and γ are constants.
Direct calculations show that

$$
\begin{aligned}
& u_{x x}=f^{\prime \prime}(x-3 y)+4 g^{\prime \prime}(2 x+y), \\
& u_{x y}=-3 f^{\prime \prime}(x-3 y)+2 g^{\prime \prime}(2 x+y), \\
& u_{y y}=9 f^{\prime \prime}(x-3 y)+g^{\prime \prime}(2 x+y) .
\end{aligned}
$$

Then

$$
\alpha u_{x x}+\beta u_{x y}+\gamma u_{y y}=(\alpha-3 \beta+9 \gamma) f^{\prime \prime}(x-3 y)+(4 \alpha+2 \beta+\gamma) g^{\prime \prime}(2 x+y)=0 .
$$

We set

$$
\left\{\begin{array} { l }
{ \alpha - 3 \beta + 9 \gamma = 0 } \\
{ 4 \alpha + 2 \beta + \gamma = 0 }
\end{array} \rightarrow \left\{\begin{array}{c}
\alpha-3 \beta+9 \gamma=0 \\
14 \beta-35 \gamma=0
\end{array}\right.\right.
$$

The triple $(3,-5,-2)$ is a solution of the system. Therefore, the function

$$
u(x, y)=f(x-3 y)+g(2 x+y)
$$

is a solution of the equation

$$
3 u_{x x}-5 u_{x y}-2 u_{y y}=0
$$

for all pairs (f, g) of C^{2}-functions.
Answer: $3 u_{x x}-5 u_{x y}-2 u_{y y}=0$.

When we toss five coins simultaneously, the corresponding sample space S is
where H is denoted for head and T is denoted for tail.
The dimension of the sample space $|S|=2^{5}=32$.
If we denote by random variable X the number of heads, then X takes the values $\{0,1,2,3,4,5\}$ with the corresponding probabilities

$$
P\{X=k\}=\binom{5}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{5-k}=\binom{5}{k}\left(\frac{1}{2}\right)^{5}, k \in\{0,1,2,3,4,5\} .
$$

Answer provided by https://www.AssignmentExpert.com

