Answer on Question \#68369 - Math - Differential Equations

Question

Form a partial differential equation of

$$
u=a e^{b y}+b \sin b x
$$

Solution

If

$$
u=a e^{b y}+b \sin b x
$$

then

$$
\begin{gathered}
\frac{\partial u}{\partial x}=b^{2} \cos b x \\
\frac{\partial u}{\partial y}=a b e^{b y} \\
\frac{\partial^{2} u}{\partial x^{2}}=-b^{3} \sin b x \\
\frac{\partial^{2} u}{\partial y^{2}}=a b^{2} e^{b y}
\end{gathered}
$$

Thus, the function

$$
u=a e^{b y}+b \sin b x
$$

satisfies the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+b^{2} u=0 .
$$

On the other hand, the function

$$
u=a e^{b y}+b \sin b x
$$

satisfies the system of partial differential equations:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=b^{2} \cos b x \\
\frac{\partial u}{\partial y}=a b e^{b y}
\end{array}\right.
$$

