Answer on Question \#67847 - Math - Statistics and Probability

Question

Ten leaves were randomly selected from each of ten similar strawberry trees for a total of 100 leaves. The number of adult female spider mites on each was counted. Mites/Leaf Frequency
$0 \quad 16$
171
210
33
Does the assumption of a Poisson distribution seem appropriate as a model for these data?

Solution

The mean of the assumed Poisson distribution is unknown so it must be estimated from the data by the sample mean:

$$
\mu=\frac{1}{100}(16 \cdot 0+71 \cdot 1+10 \cdot 2+3 \cdot 3)=1
$$

Using the Poisson distribution with $\mu=1$ we can compute the expected values:

$$
\begin{aligned}
& E_{0}=100 P(X=0)=e^{-1} \frac{1^{0}}{0!}=36.8 \\
& E_{1}=100 P(X=1)=e^{-1} \frac{1^{1}}{1!}=36.8 \\
& E_{2}=100 P(X=2)=e^{-1} \frac{1^{2}}{2!}=18.4 ; \\
& E_{3}=100 P(X=3)=e^{-1} \frac{1^{3}}{3!}=6.1
\end{aligned}
$$

Now we should use the chi-squared goodness of fit test.
Null hypothesis H_{0} : observed distribution is consistent with the Poisson distribution.
Alternative hypothesis H_{a} : observed distribution is not consisted with the Poisson distribution.
Test statistic:

$$
\begin{gathered}
\chi^{2}=\sum \frac{\left(E_{i}-O_{i}\right)^{2}}{E_{i}}=\frac{(36.8-16)^{2}}{36.8}+\frac{(36.8-71)^{2}}{36.8}+\frac{(18.4-10)^{2}}{18.4}+\frac{(6.1-3)^{2}}{6.1} \\
=59.8 .
\end{gathered}
$$

Degrees of freedom: $d f=4-1=3$.

P-value: $p<0.0001$.
Since P-value is less than 0.05 we should reject the null hypothesis and conclude that the Poisson distribution does not seem appropriate as a model for these data. Answer: the Poisson distribution does not seem appropriate as a model for these data.

