# Answer on Question \#67830 - Math - Linear Algebra 

## Question

1) Given that

$$
\begin{gathered}
a_{1}=2 i-j+k \\
a_{2}=i+3 j-2 k \\
a_{3}=3 i+2 j+5 k \\
a_{4}=3 i+2 j+5 k
\end{gathered}
$$

find scalars $a, b, c$ such that

$$
a_{4}=a a_{1}+b a_{2}+c a_{3}
$$

## Solution

If $a_{4}=a a_{1}+b a_{2}+c a_{3}$, then

$$
\begin{gathered}
3 i+2 j+5 k=a(2 i-j+k)+b(i+3 j-2 k)+c(3 i+2 j+5 k) \\
3 i+2 j+5 k=(2 a+b+3 c) i+(-a+3 b+2 c) j+(a-2 b+5 c) k
\end{gathered}
$$

$$
\left\{\begin{array}{c}
2 a+b+3 c=3 \\
-a+3 b+2 c=2 \\
a-2 b+5 c=5
\end{array}\right.
$$

It follows from the third equation that

$$
\begin{equation*}
a=5+2 b-5 c \tag{1}
\end{equation*}
$$

Add the second and the third equations

$$
b+7 c=7,
$$

hence

$$
\begin{equation*}
b=7-7 c \tag{2}
\end{equation*}
$$

Substitute (2) into (1)
$a=5+2 b-5 c=5+2(7-7 c)-5 c=5+14-14 c-5 c=19-19 c$, that is,

$$
\begin{equation*}
a=19-19 c \tag{3}
\end{equation*}
$$

Substitute (2) and (3) into the first equation of the system

$$
\begin{gathered}
2 a+b+3 c=3 \\
2(19-19 c)+7-7 c+3 c=3 \\
38-38 c+7-7 c+3 c=3 \\
-42 c=-42
\end{gathered}
$$

Hence

$$
\begin{equation*}
c=1 \tag{4}
\end{equation*}
$$

Substitute (4) into (2) and (3)
$b=7-7 c=7-7 \cdot 1=7-7=0$

$$
a=19-19 \cdot 1=19-19=0
$$

Finally one gets

$$
a=b=0 ; c=1
$$

Answer: $a=b=0 ; c=1$

## Question

2) If $a$ and $b$ are non-collinear vectors and $A=(x+y) a+(2 x+y+1) b$

Answer: the statement of the question is not complete and it is not known what one should calculate there.

## Question

3) Given the scalar defined by $\phi(x, y, z)=3 x^{2}-x y^{2}+5$

Answer: the statement of the question is not complete and it is not known what one should calculate there.

