Answer on Question \#67791 - Math - Analytic Geometry

Question

What surface is represented by $x^{2}+y^{2}=9 z$?
Give a rough sketch of it. Obtain the section of this surface by the plane $y=0$.

Solution

Elliptic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

We have that

$$
\begin{gathered}
\frac{x^{2}}{9}+\frac{y^{2}}{9}=z \\
c=1, a^{2}=b^{2}=9
\end{gathered}
$$

Therefore, there is circular paraboloid.

The trace, or cross section, in the $x y$-plane is a point.
If $c=1$, the point is the origin $(0,0)$.
The traces in planes parallel to and above the $x y$-plane are circles.
The traces in the $y z$-plane and $x z$-plane are parabolas, as the traces are in planes parallel to these.
The cross section of the surface $x^{2}+y^{2}=9 z$ by the plane $y=0$ is the parabola $z=\frac{x^{2}}{9}$ lying in the plane $y=0$. It opens up.

