Answer on Question \#67557 - Math - Complex Analysis

Question

Show that integral

$$
\oint \frac{d z}{\left(z^{2}-1\right)^{2}+3}=\frac{\pi}{2} \sqrt{2},
$$

where path of integration is unit circle in the positive sense.

Solution

Let's find zeros of the denominator:

$$
\begin{gathered}
\left(z^{2}-1\right)^{2}+3=0 \\
\left(z^{2}-1\right)^{2}=-3 \\
z^{2}-1= \pm i \sqrt{3} \\
z^{2}=|1 \pm i \sqrt{3}| \\
z= \pm \sqrt{1 \pm i \sqrt{3}}
\end{gathered}
$$

4 singular points
The module of each of the singular points is greater than one.
So that neither of them lies inside the unit circle.
Integral of a function over a closed contour, if the domain bounded by the contour does not contain singular points is equal to zero.(The Cauchy theorem)

Hence the value of the integral is zero
Answer: 0.

