Answer on Question \#67466 - Math - Complex Analysis

Question

Find the value of $a \in \mathbb{R}$ for which $a i$ is a solution of

$$
z^{4}-2 z^{3}+7 z^{2}-4 z+10=0
$$

Also find all the roots of this equation.

Solution

Let us substitute $a i$ into the equation $z^{4}-2 z^{3}+7 z^{2}-4 z+10=0$ given that $i^{2}=-1 ; i^{3}=-i ; i^{4}=1$ (see https://en.wikipedia.org/wiki/Complex number).

We get
$a^{4}+2 a^{3} i-7 a^{2}-4 a i+10=0 \Leftrightarrow\left(a^{4}-7 a^{2}+10\right)+\left(2 a^{3}-4 a\right) i=0$.
From the definition of equality of two complex numbers (see http://www.math-only-math.com/equality-of-complex-numbers.html) we conclude that

$$
\left\{\begin{array}{c}
a^{4}-7 a^{2}+10=0 \\
2 a^{3}-4 a=0
\end{array}\right.
$$

Let us solve the second equation of the system:

$$
2 a\left(a^{2}-2\right)=0 \Leftrightarrow\left[\begin{array}{c}
a=0 \\
a=\sqrt{2} \\
a=-\sqrt{2}
\end{array} .\right.
$$

But $a=0$ does not satisfy the first equation.
Let us check $a=\sqrt{2}: 4-7 \cdot 2+10=0 \Rightarrow a=\sqrt{2}$ is a solution of the obtained system.
Let us check $a=-\sqrt{2}$: $4-7 \cdot 2+10=0 \Rightarrow a=-\sqrt{2}$ is a solution of the obtained system.
So we have two roots of the original equation: $\left[\begin{array}{c}z_{1}=i \sqrt{2} \\ z_{2}=-i \sqrt{2}\end{array}\right.$ (corresponding to the values $\left[\begin{array}{c}a_{1}=\sqrt{2} \\ a_{2}=-\sqrt{2}\end{array}\right)$.

From the polynomial remainder theorem
(see https://en.wikipedia.org/wiki/Polynomial remainder theorem) it follows that the polynomial $z^{4}-2 z^{3}+7 z^{2}-4 z+10$ is divisible by polynomial $(z-i \sqrt{2})(z+i \sqrt{2})=z^{2}+2$. Using long polynomial division (see https://en.wikipedia.org/wiki/Polynomial long division) we obtain
$\frac{z^{4}-2 z^{3}+7 z^{2}-4 z+10}{z^{2}+2}=z^{2}-2 z+5$.
To solve the equation $z^{2}-2 z+5=0$ we apply the quadratic formula (see https://en.wikipedia.org/wiki/Quadratic formula) and obtain that

$$
\left[\begin{array}{l}
z_{3}=1+2 i \\
z_{4}=1-2 i
\end{array}\right.
$$

So all the roots of the original equation are

$$
\left[\begin{array}{c}
z_{1}=i \sqrt{2} \\
z_{2}=-i \sqrt{2} \\
z_{3}=1+2 i \\
z_{4}=1-2 i
\end{array}\right.
$$

Answer: $a= \pm \sqrt{2} ; z= \pm i \sqrt{2}, z=1 \pm 2 i$.

