Answer on Question \#67465 - Math - Linear Algebra

Question

Let V be the set of all functions that are twice differentiable in \mathbb{R} and $S=\{\cos x, \sin x, x \cos x, x \sin x\}$.
a) Check that S is a linearly independent set over \mathbb{R}. (Hint: Consider the equation

$$
a_{0} \cos x+a_{1} \sin x+a_{2} x \cos x+a_{3} x \sin x
$$

Put $x=0, \pi, \frac{\pi}{2}, \frac{\pi}{4}$ etc and solve for a_{i}.)
b) Let $V=[S]$ and let $T: V \rightarrow V$ be the function defined by $T(f(x))=\frac{\partial^{2}}{\partial x^{2}} f(x)+2 \frac{\partial}{\partial x} f(x)$. Check that T is a linear transformation on V.

Solution

a) $a_{0} \cos x+a_{1} \sin x+a_{2} x \cos x+a_{3} x \sin x=0$.

For $x=0$:

$$
\begin{aligned}
& a_{0} \cos 0+a_{1} \sin 0+a_{2} \cdot 0 \cdot \cos 0+a_{3} \cdot 0 \cdot \sin 0=0 \rightarrow \\
& a_{0}+0 a_{1}+0 a_{2}+0 a_{3}=0 \rightarrow \\
& a_{0}=0 .
\end{aligned}
$$

For $x=\pi$:

$$
\begin{aligned}
& a_{1} \sin \pi+a_{2} \cdot \pi \cdot \cos \pi+a_{3} \cdot \pi \cdot \sin \pi=0 \rightarrow \\
& 0 a_{1}-\pi a_{2}+0 a_{3}=0 \rightarrow \\
& a_{2}=0 .
\end{aligned}
$$

For $x=\frac{\pi}{2}$:

$$
\begin{aligned}
& a_{1} \sin \frac{\pi}{2}+a_{3} \cdot \frac{\pi}{2} \cdot \sin \frac{\pi}{2}=0 \rightarrow \\
& a_{1}+\frac{\pi}{2} a_{3}=0 \rightarrow \\
& a_{1}=-\frac{\pi}{2} a_{3} .
\end{aligned}
$$

For $x=\frac{\pi}{4}$:

$$
\begin{aligned}
& \left(-\frac{\pi}{2} a_{3}\right) \sin \frac{\pi}{4}+a_{3} \cdot \frac{\pi}{4} \cdot \sin \frac{\pi}{4}=0 \rightarrow \\
& \frac{2}{\sqrt{2}}\left(-\frac{\pi}{2} a_{3}\right)+\frac{\pi}{4} \cdot \frac{2}{\sqrt{2}} a_{3}=0 \rightarrow \\
& -\frac{\pi}{2} a_{3}+\frac{\pi}{4} a_{3}=0 \rightarrow \\
& -\frac{\pi}{4} a_{3}=0 \rightarrow \\
& a_{3}=0, \quad a_{1}=-\frac{\pi}{2} a_{3}=0 .
\end{aligned}
$$

Thus, over \mathbb{R} the equation $a_{0} \cos x+a_{1} \sin x+a_{2} x \cos x+a_{3} x \sin x=0$ has only the trivial solution $a_{0}=a_{1}=a_{2}=a_{3}=0$, therefore S is a linearly independent set over \mathbb{R}.
b) Linear transformation is such that

$$
T(k f)=k T(f), k \in \mathbb{R}
$$

and

$$
T(f+g)=T(f)+T(g)
$$

Since differentiation is a linear operation

$$
(u+v)^{\prime}=u^{\prime}+v^{\prime} \text { and }(k u)^{\prime}=k u^{\prime}
$$

transformation T is also linear.

