Answer on Question \#67463 - Math - Discrete Mathematics

Question

If A and B are the set of even integers and set of odd integers, respectively, find $A \cup B$ and $(A \cup B)^{c}$.

Solution

The set of even integers formally is

$$
A=\{n \mid n=2 k, \text { where } k \in \mathbb{Z}\}
$$

and the set of odd integers formally is

$$
B=\{n \mid n=2 k+1, \text { where } k \in \mathbb{Z}\}
$$

Their union is

$$
A \cup B=\{n \mid n \in A \text { or } n \in B\}=\{n \mid n=2 k \text { or } n=2 k+1, \text { where } k \in \mathbb{Z}\}
$$

Since every integer n is either even or odd, every integer n belongs to the union: $n \in A \cup B$, thus the union contains the set of all integers:

$$
\mathbb{Z} \subseteq A \cup B
$$

On the other hand, both A and B are subsets of \mathbb{Z}, therefore their union is a subset of \mathbb{Z} as well: $A \cup B \subseteq \mathbb{Z}$.

These two inclusions imply the equality:

$$
A \cup B=\mathbb{Z}
$$

That is, the union of A and B is the set of all integers.
Then the complement of the union consists of non-integer numbers:

$$
(A \cup B)^{c}=\{n \mid n \notin A \cup B\}=\{n \mid n \notin \mathbb{Z}\}
$$

Answer:

$$
A \cup B=\mathbb{Z} \text { and }(A \cup B)^{c}=\{n \mid n \notin \mathbb{Z}\}
$$

