Answer on Question \# 67333 - Math - Differential Equations

Question

The differential equation $y^{\prime \prime}-y^{\prime \prime}=8 x^{\wedge} 2$. I know after solving the homogeneous part of the equation you get that 1 and 0 are roots of the equation. I know for the $8 x^{\wedge} 2$ you're supposed to substitute the constant for a variable then that would be $A x^{\wedge} 2$ and that i have to derive three times, My question is, after i derive three times what would i do with the second and the first derivative? there isn't any $y^{\prime \prime}$ or y^{\prime} where to replace that in the original equation.

Solution

To solve a nonhomogeneous linear differential equation (DE)

$$
\begin{equation*}
y^{\prime \prime \prime}-y^{\prime \prime}=8 x^{2} \tag{1}
\end{equation*}
$$

we must:

1) find the complementary function y_{C} that is the general solution of the associated homogeneous DE

$$
y^{\prime \prime \prime}-y^{\prime \prime}=0
$$

2) find any particular solution y_{p} of the nonhomogeneous equation

$$
y^{\prime \prime \prime}-y^{\prime \prime}=8 x^{2}
$$

The general solution of the equation (1) is

$$
y=y_{c}+y_{p}
$$

To solve the associated homogeneous DE

$$
\begin{equation*}
y^{\prime \prime \prime}-y^{\prime \prime}=0 \tag{2}
\end{equation*}
$$

we substitute into equation the solution as exponential function $y=e^{m x}$. We get

$$
m^{3} e^{m x}-m^{2} e^{m x}=0
$$

or

$$
\left(m^{3}-m^{2}\right) e^{m x}=0
$$

This equation is satisfied only when m is a solution or a root of the third-degree polynomial equation

$$
\begin{gathered}
m^{3}-m^{2}=0 \\
m^{2}(m-1)=0
\end{gathered}
$$

Its roots are $m_{1}=m_{2}=0, \quad m_{3}=1$, and the general solution of the associated homogeneous $D E$ is

$$
y_{c}=C_{1}+C_{2} x+C_{3} e^{x}
$$

where C_{1}, C_{2}, C_{3} are real constants.
Now go to your question.
First, $y_{p}=A x^{2}$ is not a correct form of a particular solution, you could regard

$$
y_{p}=A x^{2}+B x+C
$$

where A, B, C are the undetermined coefficients.
However, for this problem it is also incorrect. The correct solution has the form

$$
y_{p}=x^{2}\left(A x^{2}+B x+C\right)=A x^{4}+B x^{3}+C x^{2}
$$

This is due to the fact that the right-hand side of equation is $8 x^{2}=8 x^{2} e^{0}$, i.e., the exponent is zero. Since the root of the characteristic equation is also zero, $m_{1}=m_{2}=0$, and this is the double root, then the factor x^{2} is obligatory.

Now solve the equation. Since the equation include $y^{\prime \prime}{ }_{p}$ and $y^{\prime \prime \prime}{ }_{p}$ we first find derivatives

$$
\begin{gathered}
y_{p}^{\prime}=4 A x^{3}+3 B x^{2}+2 C x \\
y^{\prime \prime}{ }_{p}=12 A x^{2}+6 B x+2 C \\
y_{p}^{\prime \prime \prime}=24 A x+6 B
\end{gathered}
$$

Substitute $y^{\prime \prime \prime}{ }_{p}=24 A x+6 B$ and $y^{\prime \prime}{ }_{p}=12 A x^{2}+6 B x+2 C$ into the equation (1). Since the equation (1) does not include y^{\prime}, we simply do not pay attention to it. We get

$$
24 A x+6 B-\left(12 A x^{2}+6 B x+2 C\right)=8 x^{2}
$$

or

$$
24 A x+6 B-12 A x^{2}-6 B x-2 C=8 x^{2}
$$

We now define A, B, C by solving the system of equations

$$
\left\{\begin{array}{l}
-12 A x^{2}=8 x^{2} \\
24 A x-6 B x=0 \\
6 B-2 C=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
12 A=-8 \\
24 A=6 B \\
6 B=2 C
\end{array}\right.
$$

The solution is $A=-\frac{2}{3}, B=-\frac{8}{3}, C=-8$ and

$$
y_{p}=-\frac{2}{3} x^{4}-\frac{8}{3} x^{3}-8 x^{2}
$$

Finally we get the general solution of the equation

$$
y=C_{1}+C_{2} x+C_{3} e^{x}-\frac{2}{3} x^{4}-\frac{8}{3} x^{3}-8 x^{2}
$$

Answer: the general solution of the equation is

$$
y=C_{1}+C_{2} x+C_{3} e^{x}-\frac{2}{3} x^{4}-\frac{8}{3} x^{3}-8 x^{2}
$$

