Answer on Question \#67231-Math - Analytic Geometry

Question: Find the equations of the straight lines which pass through the intersection of $3 x-$ $4 y+1=0$ and $5 x+y=1$ and which cut off equal intercepts from the axes.

Solution: First, let's find the intersection of $3 x-4 y+1=0$ and $5 x+y=1$.
We have to solve the system of equations:

$$
\left\{\begin{array}{c}
3 x-4 y+1=0 \\
5 x+y=1
\end{array}\right.
$$

We multiply the second equation of the system by 4 :

$$
\left\{\begin{array}{l}
3 x-4 y=-1 \\
20 x+4 y=4
\end{array}\right.
$$

and add two equations in order to find x :

$$
\left\{\begin{array}{c}
23 x=3 \\
y=1-5 x
\end{array}\right.
$$

The solution of the system is

$$
\left\{\begin{array}{l}
x=\frac{3}{23} \\
y=\frac{8}{23}
\end{array}\right.
$$

Now, we have to find the equations of the straight lines which pass through the point $P\left(\frac{3}{23}, \frac{8}{23}\right)$ and which cut off equal intercepts from the axes.

Equation of the straight line in intercept form is $\frac{x}{a}+\frac{y}{b}=1$. Given that intercepts are equal. Thus, $a=b$. Since the line passes through $P\left(\frac{3}{23}, \frac{8}{23}\right)$

$$
\frac{3}{23 a}+\frac{8}{23 a}=1
$$

Hence $a=\frac{3}{23}+\frac{8}{23}=\frac{11}{23}$ and the line is unique with the equation $23 x+23 y=11$.
Answer: There exists unique line, its equation is $23 x+23 y=11$.

