Answer on Question \#67211 - Math - Analytic Geometry
 Question

Prove that if $A B C$ is triangle and Dis the mid point of $B C$, then $A B^{\wedge} 2+A C^{\wedge} 2,=2^{*}\left(A D^{\wedge} 2+D C^{\wedge} 2\right)$

Solution

Draw in triangle $A B C$ segment $A D$. Since D is the midpoint of $B C$, so $A D$ is the median from A to $B C$ Consider triangle $A B D$. Use the Law of cosines (or
 cosine rule). We have

$$
\begin{equation*}
A D^{2}=A B^{2}+B D^{2}-2 A B \cdot B D \cdot \cos \alpha \tag{1}
\end{equation*}
$$

Consider triangle $A C D$. Use the Law of cosines. We have

$$
\begin{equation*}
A D^{2}=A C^{2}+C D^{2}-2 A C \cdot C D \cdot \cos \beta \tag{2}
\end{equation*}
$$

Add (1) and (2):

$$
2 A D^{2}=A B^{2}+B D^{2}+A C^{2}+C D^{2}-2 A B \cdot B D \cdot \cos \alpha-2 A C \cdot C D \cdot \cos \beta
$$

Take into account that $B D=D C$. Then we get

$$
\begin{equation*}
2 A D^{2}=A B^{2}+A C^{2}+2 D C^{2}-2 D C(A B \cdot \cos \alpha+A C \cdot \cos \beta) \tag{3}
\end{equation*}
$$

Now we draw in triangle $A B C$ the altitude $A E$. We get two right triangles $A B E$ and $A C E$
and in triangle $A C E$ we have

$$
\begin{equation*}
C E=A C \cdot \cos \beta \tag{5}
\end{equation*}
$$

A
C Substituting (4) and (5) into (3) we get

$$
\begin{equation*}
2 A D^{2}=A B^{2}+A C^{2}+2 D C^{2}-2 D C(B E+C E) \tag{6}
\end{equation*}
$$

however $B E+C E=B C=2 D C$. Then for (6) we get

$$
2 A D^{2}=A B^{2}+A C^{2}-2 D C^{2}
$$

And finally

$$
A B^{2}+A C^{2}=2\left(A D^{2}+D C^{2}\right)
$$

Answer: if $A B C$ is triangle and D is the mid point of $B C$, then

$$
A B^{2}+A C^{2}=2\left(A D^{2}+D C^{2}\right)
$$

