Question $\# 6736$.A woman is on a lake in a canoe 1 km from the closest point P of a straight shoreline. She wants to get to a point $\mathrm{Q}, 10 \mathrm{~km}$ along the shore from P . To do so, she paddles to a point R between P and Q and then walks the remaining distance to Q . She can paddle $3 \mathrm{~km} /$ hour and walk $5 \mathrm{~km} /$ hour. How should she pick the point R so that she gets to Q as quickly as possible?
Solution. Suppose that now she is at the point X. then $P X=1$, suppose that the desirable point $R \in[P, Q]$ and $R P=x$. Due to Pythagorean theorem $X R=\sqrt{1+x^{2}}$. The time womand spends on paddling from X to R and walking from R to Q (that is $10-x$ km):

$$
f(x):=\frac{\sqrt{1+x^{2}}}{3}+\frac{10-x}{5}
$$

Minimizing the last with respect to x. Take derivative $f^{\prime}(x)=\frac{x}{3 \sqrt{1+x^{2}}}-1 / 5=0$, hence $x=3 / 4$. On this plan she will spend $34 / 15 \mathrm{~h}$. We also must chek points $x=0$ and $x=10$ (this obviously does not interest us, as t will certainly give bigger time). $f(0)=$ $1 / 3+10 / 5=35 / 15>34 / 15$.
Answer $P R=3 / 4$.

