Answer on Question \#67205 - Math - Differential Equations

Question

Show that the function
i) $u(x, t)=A(x+c t)^{3}$ is a solution of the one-dimensional wave equation
ii) $u(x, t)=\exp (-u t) \sin x$ is a solution of the one-dimensional heat equation

Solution

i)

One-dimensional wave equation is

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

To show that the function

$$
u(x, t)=A(x+c t)^{3}
$$

is a solution of the one-dimensional wave equation we first find $\frac{\partial^{2} u(x, t)}{\partial t^{2}}$ and $\frac{\partial^{2} u(x, t)}{\partial x^{2}}$ for the given function:

$$
\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{\partial}{\partial t}\left[A(x+c t)^{3}\right]=3 A c(x+c t)^{2} \\
\frac{\partial^{2} u(x, t)}{\partial t^{2}} & =\frac{\partial}{\partial t}\left[3 A c(x+c t)^{2}\right]=6 A c^{2}(x+c t) \\
\frac{\partial u(x, t)}{\partial x} & =\frac{\partial}{\partial x}\left[A(x+c t)^{3}\right]=3 A(x+c t)^{2} \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =\frac{\partial}{\partial x}\left[3 A(x+c t)^{2}\right]=6 A(x+c t)
\end{aligned}
$$

Substituting the obtained values into the one-dimensional wave equation one gets the identity

$$
6 A c^{2}(x+c t)=c^{2} 6 A(x+c t)
$$

Thus, the function $u(x, t)=A(x+c t)^{3}$ is a solution of the one-dimensional wave equation.
ii)

One-dimensional heat equation is

$$
\frac{\partial u(x, t)}{\partial t}=u \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

where $u(x, t)$ is the function, u is the constant.
To show that given function is a solution of the one-dimensional heat equation we first find $\frac{\partial u(x, t)}{\partial t}$ and $\frac{\partial^{2} u(x, t)}{\partial x^{2}}$ for the given function

$$
\begin{gathered}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial}{\partial t}[\exp (-u t) \sin x]=-u \exp (-u t) \sin x \\
\frac{\partial u(x, t)}{\partial x}=\frac{\partial}{\partial x}[\exp (-u t) \sin x]=\exp (-u t) \cos x \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{\partial}{\partial x}[\exp (-u t) \cos x]=-\exp (-u t) \sin x
\end{gathered}
$$

Substituting the obtained values into the one-dimensional heat equation one gets the identity

$$
-u \exp (-u t) \sin x=-u \exp (-u t) \sin x
$$

Thus, the function $u(x, t)=\exp (-u t) \sin x$ is a solution of the one-dimensional heat equation.

Answer:

i) $u(x, t)=A(x+c t)^{3}$ is a solution of the one-dimensional wave equation; ii) $u(x, t)=\exp (-u t) \sin x$ is a solution of the one-dimensional heat equation.

