Answer on Question \#67156 - Math - Linear Algebra

Question

Under what condition $A . B$ is not equal to zero and $A \times B$ is equal to zero when A and B are two non-zero vectors?

Solution

\mathbf{A}. \mathbf{B} is not equal to zero and $\mathbf{A} \times \mathbf{B}$ is equal to zero when vectors \mathbf{A} and \mathbf{B} are collinear.

Let's show it.
Let \mathbf{B} be $\lambda \mathbf{A}$, that is,

$$
\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)=\left(\lambda A_{x}, \lambda A_{y}, \lambda A_{z}\right)
$$

then
A. $\mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=\lambda\left(A_{x} A_{x}+A_{y} A_{y}+A_{z} A_{z}\right)=\lambda\left(A_{x}^{2}+A_{y}^{2}+A_{z}^{2}\right)$.

If \mathbf{A} is a non-zero vector, then $\mathbf{A} \cdot \mathbf{B}=\lambda\left(A_{x}^{2}+A_{y}^{2}+A_{z}^{2}\right)>0$.
Next, we find $\mathbf{A} \times \mathbf{B}$:

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{B}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
\lambda A_{x} & \lambda A_{y} & \lambda A_{z}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
A_{y} & A_{z} \\
\lambda A_{y} & \lambda A_{z}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
A_{x} & A_{z} \\
\lambda A_{x} & \lambda A_{z}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
A_{x} & A_{y} \\
\lambda A_{x} & \lambda A_{y}
\end{array}\right|= \\
& =\mathbf{i}\left(\lambda A_{y} A_{z}-\lambda A_{y} A_{z}\right)-\mathbf{j}\left(\lambda A_{x} A_{z}-\lambda A_{x} A_{z}\right)+\mathbf{k}\left(\lambda A_{x} A_{y}-\lambda A_{x} A_{y}\right)=0
\end{aligned}
$$

Answer: if vectors \mathbf{A} and \mathbf{B} are collinear, non-zero vectors, then $\mathbf{A} . \mathbf{B} \neq 0$ and $\mathbf{A} \times \mathbf{B}=0$.

