Answer on Question \#67151 - Math - Differential Equations

Question

A chain hangs over a nail with 2.0 m on one side and 6.0 m on the other side. If the force of friction is equal to the weight of 1.0 m of the chain, calculate the time required for the chain to slide off the nail.

Solution

Let $l=8$ be the length of the chain, $x(t)$ be the length of the longest side of the chain, m be the mass of one meter of the chain.
Mass of the chain is $M=m l$, the friction force is $m \cdot 1 \cdot g=m g$.
$F=M a$.
$m x(t) g-m(l-x(t)) g-m g=M a$.
$2 m g x(t) g-m l g-m g=m l \frac{d^{2} x}{d t^{2}}$.

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-2 \frac{g}{l} x(t)=-\frac{(l+1) g}{l} . \tag{1}
\end{equation*}
$$

Let $x(t)=C$ be a particular solution of nonhomogeneous differential equation (1), where C is a real constant.
Then

$$
\begin{aligned}
& \frac{d^{2} C}{d t^{2}}-2 \frac{g}{l} C=-\frac{(l+1) g}{l}, \\
& -2 \frac{g}{l} C=-\frac{(l+1) g}{l}, \\
& \text { hence } C=\frac{l+1}{2} .
\end{aligned}
$$

The general solution of the homogeneous equation $\frac{d^{2} x}{d t^{2}}-2 \frac{g}{l} x(t)=0$ is $x_{*}(t)=A e^{\sqrt{\frac{2 g}{l}} t}+B e^{-\sqrt{\frac{2 g}{l}} t}$.
The general solution of nonhomogeneous differential equation (1) is

$$
\begin{aligned}
& x(t)=A e^{\sqrt{\frac{2 g}{l}} t}+B e^{-\sqrt{\frac{2 g}{l}} t}+\frac{l+1}{2} \\
& x(t)=A e^{1.566 t}+B e^{-1.566 t}+4.5 .
\end{aligned}
$$

Initial conditions: $x(0)=6, \frac{d x}{d t}=0$.
So $\left\{\begin{array}{c}A+B+4.5=6 \\ A-B=0\end{array} \rightarrow \quad A=B=0.75\right.$.
$x(t)=0.75 e^{1.566 t}+0.75 e^{-1.566 t}+4.5$.
When $x(t)=8$:
$0.75 e^{1.566 t}+0.75 e^{-1.566 t}+4.5=8 \rightarrow e^{1.566 t}+e^{-1.566 t}-4.667=0 \rightarrow$ $e^{2 * 1.566 t}-4.667 e^{1.566 t}+1=0 \rightarrow e^{1.566 t}=0.225$ or $e^{1.566 t}=4.442$.

If $e^{1.566 t}=0.225$ then $t=-0.953<0$ is impossible.
If $e^{1.566 t}=4.442$ then $t=0.953 \mathrm{sec}$.
Answer: $t=0.953 \mathrm{sec}$.

