Answer on Question \#67101 - Math - Algebra

Question

(true/false)with justification.
There is no real number 'a' such that the equation $x^{\wedge} 2+a x-3=0$ has equal roots

Solution

$x^{2}+a x-3=0$,
$D=b^{2}-4 a c=a^{2}+3 * 4=a^{2}+12$,
$x_{1}=\frac{-a+\sqrt{D}}{2}=\frac{-a+\sqrt{a^{2}+12}}{2}$,
$x_{2}=\frac{-a-\sqrt{D}}{2}=\frac{-a-\sqrt{a^{2}+12}}{2}$.
If the equation has equal roots, then a can be found from the following equation:
$x_{1}=x_{2}$,
$\frac{-a+\sqrt{a^{2}+12}}{2}=\frac{-a-\sqrt{a^{2}+12}}{2}$,
$2\left(-a+\sqrt{a^{2}+12}\right)=2\left(-a-\sqrt{a^{2}+12}\right)$,
$-2 a+2 a=2\left(-\sqrt{a^{2}+12}-\sqrt{a^{2}+12}\right)$,
$-4 \sqrt{a^{2}+12}=0$.
It should be noted that
$\sqrt{a^{2}+12} \geq \sqrt{12}>0$, so $\sqrt{a^{2}+12} \neq 0$.
Thus, there is no real number 'a' such that the equation $x^{\wedge} 2+a x-3=0$ has equal roots. It is True.

Answer: True.

