Answer on Question \#67036 - Math - Algebra

Question

Prove De Moivre's theorem for $n \in \mathbb{Z} \backslash \mathbb{N}$.

Solution

So we need to prove that

$$
(\cos x+i \sin x)^{n}=\cos n x+i \sin n x \text { for } n \in \mathbb{Z} \backslash \mathbb{N} .
$$

The set $\mathbb{Z} \backslash \mathbb{N}$ consists of all negative integers and zero. Our proof will be based on proof for natural n using the method of math induction.

It is clear that formula holds for $n=1$. Assuming it holds for some natural $n=k$, that is,

$$
(\cos x+i \sin x)^{k}=\cos k x+i \sin k x
$$

we'll prove that it also holds for $n=k+1$. By induction hypothesis and using that $i^{2}=-1$, we have

$$
\begin{gathered}
(\cos x+i \sin x)^{k+1}=(\cos x+i \sin x)^{k}(\cos x+i \sin x)=(\cos k x+i \sin k x)(\cos x+i \sin x) \\
=\cos k x \cos x-\sin k x \sin x+i(\cos k x \sin x+\sin k x \cos x)
\end{gathered}
$$

Then using angle sum and difference identities

$$
\begin{aligned}
& \sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
& \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y
\end{aligned}
$$

we simplify the previous expression, and obtain

$$
(\cos x+i \sin x)^{k+1}=\cos (k+1) x+i \sin (k+1) x
$$

Hence, by the principle of math induction, De Moivre's identity holds for all $n \in \mathbb{N}$.
Now we proceed to the second part of the proof, let's show that identity holds for all negative integers and zero. The case $n=0$ is satisfied, since $\cos (0)+i \sin (0)=1=(\cos x+i \sin x)^{0}$. In case of negative integers we'll use the statement for natural n. If $n \in \mathbb{N}$, then $-n$ will be a negative integer, so

$$
(\cos x+i \sin x)^{-n}=\frac{1}{(\cos x+i \sin x)^{n}}=\frac{1}{\cos n x+i \sin n x}
$$

Finally, we multiple and divide the right-hand side of fraction by $(\cos n x-i \sin n x)$:

$$
\begin{gathered}
(\cos x+i \sin x)^{-n}=\frac{\cos n x-i \sin n x}{(\cos n x+i \sin n x)(\cos n x-i \sin n x)}=\frac{\cos n x-i \sin n x}{\cos ^{2} n x+\sin ^{2} n x} \\
=\frac{\cos n x-i \sin n x}{1}=\cos n x-i \sin n x
\end{gathered}
$$

thus proving the identity for negative integers.
So we proved that identity holds for $n \in \mathbb{Z} \backslash \mathbb{N}$ (using that it also holds for $n \in \mathbb{N}$).

