Answer on Question \#66999 - Math - Discrete Mathematics

Question

Let $a_{n} \geq \frac{2^{n}-1}{n}$ and let $v \leq\left[\log _{2} n\right]$. Show that $a_{n}-v>0$.

Solution

Since $a_{n} \geq \frac{2^{n}-1}{n}$ and $v \leq\left[\log _{2} n\right]$, it is sufficient to establish that

$$
\frac{2^{n}-1}{n}>\left[\log _{2} n\right]
$$

for each n, then

$$
a_{n}-v>0 .
$$

For $n=1$ we have that $\frac{2^{1}-1}{1}>\left[\log _{2} 1\right] \Leftrightarrow 1>0$ holds true.
For $n=2$ we have that $\frac{2^{2}-1}{2}>\left[\log _{2} 2\right] \Leftrightarrow \frac{3}{2}>1$ holds true.
For $n=3$ we have that $\frac{2^{3}-1}{3}>\left[\log _{2} 3\right] \Leftrightarrow \frac{7}{3}>1$ holds true.
For $n=4$ we have that $\frac{2^{4}-1}{4}>\left[\log _{2} 4\right] \Leftrightarrow \frac{15}{4}>2$ holds true.
Let $n \geq 5$. Then by binomial theorem and $\frac{n-2}{3} \geq 1$ we have that

$$
\begin{aligned}
\frac{2^{n}-1}{n}= & \frac{(1+1)^{n}-1}{n}=\frac{\left(1+n+\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)}{6}+\ldots+\frac{n(n-1)(n-2)}{6}+\frac{n(n-1)}{2}+n+1\right)-1}{n} \geq \\
\geq \frac{\left(1+n+2 \frac{n(n-1)(n-2)}{6}\right)-1}{n}= & \frac{n+n(n-1) \frac{(n-2)}{3}}{n} \geq \frac{n+n(n-1)}{n}=\frac{n+n^{2}-n}{n}= \\
& =n \geq \log _{2} n \geq\left[\log _{2} n\right] .
\end{aligned}
$$

Hence $\frac{2^{n}-1}{n}>\left[\log _{2} n\right]$ for each n.

