Question

Let
$$a_n \ge \frac{2^n - 1}{n}$$
 and let $v \le \lfloor \log_2 n \rfloor$. Show that $a_n - v > 0$.

Solution

Since $a_n \ge \frac{2^n - 1}{n}$ and $v \le [\log_2 n]$, it is sufficient to establish that $\frac{2^n - 1}{n} > [\log_2 n]$

for each n, then

$$a_n - v > 0.$$
For $n = 1$ we have that $\frac{2^1 - 1}{1} > [\log_2 1] \Leftrightarrow 1 > 0$ holds true.
For $n = 2$ we have that $\frac{2^2 - 1}{2} > [\log_2 2] \Leftrightarrow \frac{3}{2} > 1$ holds true.
For $n = 3$ we have that $\frac{2^3 - 1}{3} > [\log_2 3] \Leftrightarrow \frac{7}{3} > 1$ holds true.
For $n = 4$ we have that $\frac{2^4 - 1}{4} > [\log_2 4] \Leftrightarrow \frac{15}{4} > 2$ holds true.
Let $n \ge 5$. Then by binomial theorem and $\frac{n - 2}{3} \ge 1$ we have that
 $\frac{2^n - 1}{n} = \frac{(1 + 1)^n - 1}{n} = \frac{\left(1 + n + \frac{n(n - 1)}{2} + \frac{n(n - 1)(n - 2)}{6} + \dots + \frac{n(n - 1)(n - 2)}{6} + \frac{n(n - 1)}{2} + n + 1\right) - 1}{n} \ge \frac{2\left(1 + n + 2\frac{n(n - 1)(n - 2)}{6}\right) - 1}{n} = \frac{n + n(n - 1)\frac{(n - 2)}{3}}{n} \ge \frac{n + n(n - 1)}{n} = \frac{n + n^2 - n}{n} = n \ge \log_2 n \ge [\log_2 n].$
Hence $\frac{2^n - 1}{n} > [\log_2 n]$ for each n .