Answer on Question \#66909 - Math - Trigonometry Question

Find the value of common radius which is 4 of the ball bearings.

Solution

Ball bearing is pictured below. The blue circles are balls. The balls are rolling between two bearing races. Let's suppose that R is the radius of external race and r is the radius of internal race. The next step is simplifying the sketch, where we do not need to draw all parts of ball bearing:

Combine 4 of the ball bearings (see below).

Here we have four balls; small internal race (green circle) and big external race. But we have a small problem. This big ball bearing (combined of 4 ball bearings) will never work. Suppose that 1 ball bearing rotate in a counterclockwise (CCW) direction. Therefore the 2 ball bearing will rotate in a clockwise (CW) direction. According to 1 ball rotating the small internal race (green circle) rotates in a CW direction. In the same way, the small internal race (green circle) will rotate in a CCW direction, if we take into account the 2 ball rotating. So we should leave a free space between two ball bearings.

Combine 4 of the ball bearings with equal spaces between balls (see below).
Let's free space between two ball bearings is a.

NO' length is

Triangle $\triangle O N O^{\prime}$ is isosceles and right. So OO^{\prime} length is

Answer:
The common radius of external race is

The radius of internal race is

$$
\begin{aligned}
& \mathrm{NO}^{\prime}=0.5 a+\mathrm{R} \\
& \mathrm{OO}=\sqrt{2}(0.5 a+\mathrm{R})
\end{aligned}
$$

$$
R_{e}=O O^{\prime}+R=R(1+\sqrt{2})+a / \sqrt{2}
$$

$$
R_{\text {in }}=R_{e}-2 R=R(\sqrt{2}-1)+a_{\sqrt{2}}
$$

