ANSWER ON QUESTION \#66883 - MATH - GEOMETRY

QUESTION

SMNF is a regular triangular pyramid. SO (height) $=6 \mathrm{~cm}$. Measure of the SEO angle is 60 degrees $\left(\angle S E O=60^{\circ}\right)$. Find: MF, apothem SE, total area of pyramid, volume of pyramid and the area of the SME triangle.

SOLUTION

1) Since $S M N F$ is a regular triangular pyramid, the base of the height falls in the centroid of the triangle $\triangle M N F$.
2) Since $S M N F$ is a regular triangular pyramid, the triangle $\triangle M N F$ is regular. This means that $M E$ is a height, median, bisector.
$\left.\begin{array}{l}S O \perp M E \\ M E \perp N F\end{array}\right\} \rightarrow S E \perp N F$ by the theorem of three perpendiculars.
Conclusion, $S E$ is an apothem.
3) Consider a triangle $\triangle S E O$:
$S O \perp O E$, hence the triangle $\triangle S E O$ is right.
$\left.\begin{array}{c}\angle S E O=60^{\circ} \\ S O=6\end{array}\right\} \rightarrow \tan \angle S E O=\frac{S O}{O E} \rightarrow O E=\frac{S O}{\tan \angle S E O}=\frac{S O}{\tan 60^{\circ}}=\frac{6}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}=2 \sqrt{3} ;$
$\sin \angle S E O=\frac{S O}{S E} \rightarrow S E=\frac{S O}{\sin \angle S E O}=\frac{S O}{\sin 60^{\circ}}=\frac{6}{\frac{\sqrt{3}}{2}}=\frac{12}{\sqrt{3}}=\frac{12 \sqrt{3}}{3}=4 \sqrt{3}$.

$$
\begin{gathered}
\hline S E=4 \sqrt{3} \mathrm{~cm} \text { is an apothem } \\
O E=2 \sqrt{3} \mathrm{~cm} \\
\hline
\end{gathered}
$$

4) Consider a regular triangle $\triangle M N F$.
O is the center of mass of a triangle. As we know, the center of mass divides the median in the ratio 2 to 1 counting from the top of the triangle.
In this case,

$$
\begin{gathered}
\frac{M O}{O E}=\frac{2}{1} \rightarrow M O=2 O E \rightarrow M E=M O+O E=2 O E+O E=3 O E=3 \cdot 2 \sqrt{3}=6 \sqrt{3} \\
M E=6 \sqrt{3} \mathrm{~cm} \text { is a height of a regular triangle }
\end{gathered}
$$

We write down the formula for the height of a regular triangle

$$
h=\frac{a \sqrt{3}}{2}, a \text { is the length of triangle side }
$$

In this case,

$$
\begin{aligned}
& M E=\frac{M F \sqrt{3}}{2} \rightarrow M F=\frac{2 M E}{\sqrt{3}}=\frac{2 \cdot 6 \sqrt{3}}{\sqrt{3}}=12 \\
& M F=12 \mathrm{~cm} \text { is a side of the regular pyramid }
\end{aligned}
$$

The area of the base is

$$
A_{1}=A_{\triangle M N F}=\frac{M F^{2} \sqrt{3}}{4}=\frac{12^{2} \sqrt{3}}{4}=36 \sqrt{3}
$$

By the definition, the volume of the pyramid is

$$
\begin{gathered}
V=\frac{1}{3} S_{1} \cdot h=\frac{1}{3} \cdot 36 \sqrt{3} \cdot 6=72 \sqrt{3} \\
V=72 \sqrt{3} \mathrm{~cm}^{3}
\end{gathered}
$$

By the definition,

$$
\begin{gathered}
A_{\triangle S M E}=\frac{1}{2} \cdot S O \cdot M E=\frac{1}{2} \cdot 6 \cdot 6 \sqrt{3}=18 \sqrt{3} \mathrm{~cm}^{2} \\
A_{\triangle S M E}=18 \sqrt{3} \mathrm{~cm}^{2}
\end{gathered}
$$

By the definition, the total area is

$$
A_{\text {total }}=A_{\text {base }}+\frac{1}{2} \cdot P \cdot L,
$$

where
$A_{\text {base }}=A_{1}$ is the area of the base,
P is the base perimeter,
L is an apothem.
In this case,

$$
\begin{gathered}
A_{\text {total }}=36 \sqrt{3}+\frac{1}{2} \cdot 3 M F \cdot S E=36 \sqrt{3}+\frac{1}{2} \cdot 3 \cdot 12 \cdot 4 \sqrt{3}= \\
= \\
54 \sqrt{3}+72 \sqrt{3}=126 \sqrt{3} \\
A_{\text {total }}=126 \sqrt{3} \mathrm{~cm}^{2}
\end{gathered}
$$

ANSWER:

$$
\begin{gathered}
M F=12 \mathrm{~cm} \\
S E=4 \sqrt{3} \mathrm{~cm} \\
A_{\text {total }}=126 \sqrt{3} \mathrm{~cm}^{2} \\
V=72 \sqrt{3} \mathrm{~cm}^{3} \\
A_{\triangle S M E}=18 \sqrt{3} \mathrm{~cm}^{2}
\end{gathered}
$$

