## Answer on Question \# 66865- Math - Calculus

Question: Determine the interval on which the given function is continuous

$$
f(x)= \begin{cases}\sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Solution: The function $\boldsymbol{h}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$ is continuous on $(-\infty, \mathbf{0}) \cup(\mathbf{0},+\infty)$. The function $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ is continuous for arbitrary real $\boldsymbol{x}$. Therefore, $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { s i n }} \frac{\mathbf{1}}{\boldsymbol{x}}=\boldsymbol{g}(\boldsymbol{h}(\boldsymbol{x}))$ is continuous on $(-\infty, \mathbf{0}) \cup$ $(\mathbf{0},+\infty)$ as a composition of continuous functions.

Let us now investigate the point $\boldsymbol{x}=\mathbf{0}$. The $\lim _{x \rightarrow 0} f(\boldsymbol{x})$ does not exist. Indeed, let us take two sequences $\boldsymbol{x}_{\boldsymbol{n}}=\frac{\mathbf{1}}{2 \pi n}$ and $\boldsymbol{x}_{\boldsymbol{n}}^{\prime}=\frac{\mathbf{1}}{\frac{\pi}{2}+2 \pi n^{\prime}} \boldsymbol{n} \in \boldsymbol{N}$. Both of them converge to 0 as $\boldsymbol{n} \rightarrow+\infty$, but $\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\lim _{n \rightarrow+\infty} \sin 2 \pi n=0$ and $\lim _{n \rightarrow+\infty} f\left(x_{n}^{\prime}\right)=\lim _{n \rightarrow+\infty} \sin \left(\frac{\pi}{2}+2 \pi n\right)=1$. Since $0 \neq 1$, the $\lim _{x \rightarrow \mathbf{0}} \boldsymbol{f}(\boldsymbol{x})$ does not exist. Therefore, $\boldsymbol{x}=\mathbf{0}$ is a point of discontinuity for the function $\boldsymbol{f}(\boldsymbol{x})$.

The function $\boldsymbol{f}(\boldsymbol{x})$ is continuous on $(-\infty, \mathbf{0})$ and on $(\mathbf{0},+\infty)$, or on the arbitrary subinterval of the mentioned intervals.

Answer: The function $\boldsymbol{f}(\boldsymbol{x})$ is continuous on the set $(-\infty, \mathbf{0}) \cup(\mathbf{0},+\infty)$.
Answer provided by https://www.AssignmentExpert.com

