Answer on Question # 66865- Math - Calculus

Question: Determine the interval on which the given function is continuous

$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases}$$

Solution: The function $h(x) = \frac{1}{x}$ is continuous on $(-\infty, 0) \cup (0, +\infty)$. The function $g(x) = \sin x$ is continuous for arbitrary real x. Therefore, $f(x) = \sin \frac{1}{x} = g(h(x))$ is continuous on $(-\infty, 0) \cup (0, +\infty)$ as a composition of continuous functions.

Let us now investigate the point x = 0. The $\lim_{x \to 0} f(x)$ does not exist. Indeed, let us take two sequences $x_n = \frac{1}{2\pi n}$ and $x'_n = \frac{1}{\frac{\pi}{2} + 2\pi n'}$, $n \in N$. Both of them converge to 0 as $n \to +\infty$, but $\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin 2\pi n = 0$ and $\lim_{n \to +\infty} f(x'_n) = \lim_{n \to +\infty} \sin \left(\frac{\pi}{2} + 2\pi n\right) = 1$. Since $0 \neq 1$, the $\lim_{x \to 0} f(x)$ does not exist. Therefore, x = 0 is a point of discontinuity for the function f(x).

The function f(x) is continuous on $(-\infty, 0)$ and on $(0, +\infty)$, or on the arbitrary subinterval of the mentioned intervals.

Answer: The function f(x) is continuous on the set $(-\infty, 0) \cup (0, +\infty)$.

Answer provided by https://www.AssignmentExpert.com