Answer on Question \#66843 - Math - Differential Equations

Question

Obtain the Fourier series for the following periodic function which has a period of 2π : $f(x)=x^{\wedge} 2$ for $-\pi \leq x \leq \pi$.

Solution

For the periodic function $f(x)=x^{2}$ which has a period of $2 \pi,-\pi \leq x \leq \pi$, the Fourier series is given by

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

are the Fourier coefficients.
Find a_{0} :

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{\pi} \frac{x^{3}}{3}\right|_{-\pi} ^{\pi}=\frac{1}{3 \pi}\left(\pi^{3}-(-\pi)^{3}\right)=\frac{2 \pi^{2}}{3}
$$

Find a_{n} :

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (n x) d x
$$

here we used that the integrand, $x^{2} \cos (n x)$, is even. To find a_{n} we use integration by parts

$$
\begin{gathered}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (n x) d x=\frac{2}{\pi n} \int_{0}^{\pi} x^{2} d(\sin (n x))=\left.\frac{2}{\pi n} x^{2} \sin (n x)\right|_{0} ^{\pi}-\frac{2}{\pi n} \int_{0}^{\pi} 2 x \sin (n x) d x= \\
=\frac{2}{\pi n}\left(\pi^{2} \sin (n \pi)-0\right)-\frac{4}{\pi n^{2}} \int_{0}^{\pi} x d(-\cos (n x))=0+\frac{4}{\pi n^{2}} \int_{0}^{\pi} x d(\cos (n x))= \\
=\left.\frac{4}{\pi n^{2}} x \cos (n x)\right|_{0} ^{\pi}-\frac{4}{\pi n^{2}} \int_{0}^{\pi} \cos (n x) d x=\frac{4}{\pi n^{2}}(\pi \cos (n \pi)-0)-\left.\frac{4}{\pi n^{3}} \sin (n x)\right|_{0} ^{\pi}= \\
=\frac{4}{n^{2}} \cos (n \pi)-\frac{4}{\pi n^{3}}(\sin (n \pi)-\sin 0)=\frac{4}{n^{2}}(-1)^{n}-0=(-1)^{n} \frac{4}{n^{2}}
\end{gathered}
$$

Find b_{n} :

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin (n x) d x=0
$$

since the integrand, $x^{2} \sin (n x)$, is odd.
So

$$
f(x)=x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x
$$

Answer: Fourier series is

$$
f(x)=x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x
$$

Answer provided by https://www.AssignmentExpert.com

