Answer on Question \#66760 - Math - Calculus

Question

Obtain the directional derivative for a scalar field at the point.

Solution

The rate of change of $f(x, y)$ in the direction of the unit vector $\vec{u}=\{a, b\}$ is called the directional derivate and is denoted by $D_{\bar{u}} f(x, y)$. The definition of the directional derivate is

$$
D_{\bar{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+a h, y+b h)-f(x, y)}{h} .
$$

So, the definition of the directional derivative is very similar to the definition of partial derivatives. However, in practice this can be a very difficult limit to compute so we need an easier way of taking directional derivatives. It's actually fairly simple to derive an equivalent formula for taking directional derivatives.

$$
D_{u} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b .
$$

Or, if we want to use the standard basis vectors, the gradient is

$$
\nabla f=f_{x} \vec{i}+f_{y} \vec{j}
$$

The definition is only shown for functions of two or three variables, however there is a natural extension to functions of any number of variables that we'd like.

With the definition of the gradient we can now say that the directional derivative is given by

$$
D_{\bar{u}} f=\nabla f \cdot \vec{u},
$$

where we will no longer show the variable and use this formula for any number of variables.

