Answer on Question \#66744 - Math - Differential Equations

Question

A box is to have square base an open top and volume of 32 meter cube. Find the dimension of the box that box that uses the least amount of material.

Solution

$$
\begin{gathered}
V=x^{2} h=32 \rightarrow \quad h=\frac{32}{x^{2}} . \\
S=x^{2}+4 x h=x^{2}+\frac{128}{x} . \\
\frac{d S}{d x}=0 \rightarrow 2 x-\frac{128}{x^{2}}=0 \rightarrow x=\sqrt[3]{64}=4 . \\
\frac{d^{2} S}{d x^{2}}(4)=\left.\frac{256}{x^{3}}\right|_{x=4}=\frac{256}{4^{3}}>0 .
\end{gathered}
$$

So S has minimum at $x_{*}=4$ and

$$
h_{*}=\frac{32}{x_{*}^{2}}=\frac{32}{4^{2}}=\frac{32}{16}=2 .
$$

The box uses the least amount of material when $x=4 m, h=2 m$.
Answer: $4 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m}$.

