Answer on Question \#66710 - Math - Statistics and Probability

Question

Which of the following statements are true or false? Give reasons for your answers.
(i) If $P(A)=0.4, P(A \cup B)=0.7$ and A and B are independent sets, then $P(B)=0.55$.
(ii) By Chebyschev's inequality, $P\{|x-\mu| \geq 2 \sigma\} \leq 0.2$

Solution

(i)

From independence of A and B it follows that

$$
P(A \cap B)=P(A) P(B)
$$

By inclusion-exclusion principle and by previous statement

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A) P(B) .
$$

So we have

$$
P(B)=\frac{P(A \cup B)-P(A)}{1-P(A)}=\frac{0.7-0.4}{1-0.4}=\frac{0.3}{0.6}=0.5 \neq 0.55
$$

The statement in the question is false.
(ii)

By Chebyschev's inequality

$$
P(|x-\mu| \geq 2 \sigma) \leq \frac{\sigma^{2}}{4 \sigma^{2}}=\frac{1}{4}=0.25>0.2
$$

The statement in the question is false.

Answer:

(i) False.
(ii) False.

