Answer on Question \#66700 - Math - Calculus

Question

A cylindrical tank with radius 3 m is being filled with water at a rate of $4 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water increasing?

Solution

Let R be the radius of the tank, $H(t)$ the height of the water at time t, and $V(t)$ the volume of the water. The quantities $V(t), R$ and $H(t)$ are related by the equation

$$
\begin{equation*}
V(t)=\pi R^{2} H(t) \tag{1}
\end{equation*}
$$

The rate of increase of the volume is the derivative with respect to time,

$$
\frac{d V}{d t}
$$

and the rate of increase of the height is

$$
\frac{d H}{d t}
$$

We can therefore restate the given and the unknown as follows Given:

$$
\frac{d V}{d t}=4 \mathrm{~m}^{3} / \mathrm{min}
$$

Unknown:

$$
\frac{d H}{d t}
$$

Now we take derivative of each side of (1) with respect to t :

$$
\frac{d V}{d t}=\pi R^{2} \frac{d H}{d t}
$$

So

$$
\frac{d H}{d t}=\frac{1}{\pi R^{2}} \frac{d V}{d t}
$$

Substituting $R=3 \mathrm{~m}$ and $d V / d t=4 \mathrm{~m}^{3} / \mathrm{min}$ we have

$$
\frac{d H}{d t}=\frac{1}{\pi(3)^{2}} \cdot 4=\frac{4}{9 \pi}
$$

Answer: the height of the water increasing at a rate of

$$
\frac{d H}{d t}=\frac{4}{9 \pi} \approx 0.14 \mathrm{~m} / \mathrm{min}
$$

Answer provided by https://www.AssignmentExpert.com

