Answer on Question \#66676 - Math - Statistics and Probability

Question

If the second moment of a Poisson distribution is 6 , find the probability $P(X \geq 2)$.

Solution

We start from the definition of a Poisson distribution (see https://en.wikipedia.org/wiki/Poisson distribution). We have

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k=0,1, \ldots ; \lambda>0 .
$$

Further, we use the definition of moments (see https://en.wikipedia.org/wiki/Moment (mathematics)). We have

$$
E\left[X^{2}\right]=6
$$

On the other hand, we know that

$$
E[X]=\lambda ; \operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\lambda
$$

(see https://en.wikipedia.org/wiki/Poisson distribution). Then

$$
E\left[X^{2}\right]=\operatorname{Var}[X]+(E[X])^{2}=\lambda+\lambda^{2} .
$$

We have the following quadratic equation:

$$
\lambda^{2}+\lambda=6 \Leftrightarrow \lambda^{2}+\lambda-6=0 .
$$

Using Vieta's formula (see https://brilliant.org/wiki/vietas-formula/) the roots are

$$
\left[\begin{array}{c}
\lambda=2 \\
\lambda=-3
\end{array}\right.
$$

Since λ must be positive we conclude that $\lambda=2$, and X has the following distribution:

$$
P(X=k)=\frac{2^{k}}{k!} e^{-2}
$$

Then
$P(X \geq 2)=1-P(X<2)=1-(P(X=0)+P(X=1))=$
$=1-\left(e^{-2}+2 e^{-2}\right)=1-\frac{3}{e^{2}}=\frac{e^{2}-3}{e^{2}} \approx 0.594$.

Answer: $\frac{e^{2}-3}{e^{2}}$.

