Answer on Question \# 66662 - Math - Differential Equations

 QuestionSolve the following IVP
$\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)+(d y) /(d x)-2 y=-6 \sin 2 x-18 \cos 2 x$
$y(0)=2, y^{\prime}(0)=2$

Solution

We have IVP

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=-6 \sin 2 x-18 \cos 2 x, \quad y(0)=2, y^{\prime}(0)=2
$$

Find first the general solution of this equation which can be written as

$$
y=y_{c}+y_{p}
$$

where y_{p} is a particular solution of original equation and y_{c} is the general solution of the related homogeneous equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0
$$

To find y_{c} we substitute solution as exponential function $y=e^{m x}$ into the equation. We get

$$
m^{2} e^{m x}+m e^{m x}-2 e^{m x}=0
$$

or

$$
\left(m^{2}+m-2\right) e^{m x}=0
$$

Then we get the auxiliary equation

$$
m^{2}+m-2=0
$$

with roots $m=1$ and $m=-2$. So the solution of the complementary equation is

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-2 x}
$$

where c_{1} and c_{2} are some constants. Next we find a particular solution in the form

$$
y_{p}=A \sin 2 x+B \cos 2 x
$$

Then

$$
\begin{gathered}
y_{p}^{\prime}=2 A \cos 2 x-2 B \sin 2 x \\
y^{\prime \prime}=-4 A \sin 2 x-4 B \cos 2 x
\end{gathered}
$$

Substituting y_{p}, y_{p}^{\prime} and $y^{\prime \prime}{ }_{p}$ into the given differential equation gives
$-4 A \sin 2 x-4 B \cos 2 x+2 A \cos 2 x-2 B \sin 2 x-2 A \sin 2 x-2 B \cos 2 x=-6 \sin 2 x-18 \cos 2 x$ or

$$
-(6 A+2 B) \sin 2 x-(6 B-2 A) \cos 2 x=-6 \sin 2 x-18 \cos 2 x
$$

This is true if

$$
6 A+2 B=6 \text { and } 6 B-2 A=18
$$

The solution of this system is $A=0$ and $B=3$. So, the particular solution is

$$
y_{p}=3 \cos 2 x
$$

The general solution of the given equation is

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}+3 \cos 2 x
$$

Now we find c_{1} and c_{2} using the initial conditions $y(0)=2, y^{\prime}(0)=2$:

$$
\begin{gathered}
y(0)=c_{1} e^{0}+c_{2} e^{0}+3 \cos 0=c_{1}+c_{2}+3=2 \\
y^{\prime}=c_{1} e^{x}-2 c_{2} e^{-2 x}-6 \sin 2 x
\end{gathered}
$$

$$
y^{\prime}(0)=c_{1} e^{0}-2 c_{2} e^{0}-6 \sin 0=c_{1}-2 c_{2}=2
$$

We have system of equation

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=-1 \\
c_{1}-2 c_{2}=2
\end{array}\right.
$$

The solution of this system is $c_{1}=0, c_{2}=-1$, so the solution of IVP is

$$
y=-e^{-2 x}+3 \cos 2 x
$$

Answer: The solution of IVP is

$$
y=-e^{-2 x}+3 \cos 2 x
$$

