Answer on Question \#66660 - Math - Differential Equations

Question

Solve the following equation by changing the independent variable

$$
\left(1+x^{\wedge} 2\right)^{\wedge} 2 y^{\prime \prime}+2 x\left(1+x^{\wedge} 2\right) y^{\prime}+4 y=0
$$

Solution

We have equation

$$
\left(1+x^{2}\right)^{2} y^{\prime \prime}+2 x\left(1+x^{2}\right) y^{\prime}+4 y=0
$$

Divide both sides of the equation by $\left(1+x^{2}\right)$

$$
\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+\frac{4 y}{\left(1+x^{2}\right)}=0
$$

For the first and the second terms we have

$$
\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=\left(\left(1+x^{2}\right) y^{\prime}\right)^{\prime}
$$

The equation takes the form

$$
\left(\left(1+x^{2}\right) y^{\prime}\right)^{\prime}+\frac{4 y}{\left(1+x^{2}\right)}=0
$$

or

$$
\left(1+x^{2}\right) \frac{d}{d x}\left(\left(1+x^{2}\right) \frac{d y}{d x}\right)+4 y=0
$$

Change the independent variable x by $t=\arctan x$. Replace the variable in the derivative

$$
\frac{d}{d x}=\frac{d}{d t} \frac{d t}{d x}=\frac{d}{d t} \frac{d(\arctan x)}{d x}=\frac{d}{d t} \cdot \frac{1}{1+x^{2}}
$$

Multiplying both sides of equality by $1+x^{2}$ we get

$$
\left(1+x^{2}\right) \frac{d}{d x}=\frac{d}{d t}
$$

The equation takes the form

$$
\frac{d^{2} y}{d t^{2}}+4 y=0
$$

The solution of this equation is

$$
y=A \cos 2 t+B \sin 2 t
$$

where A and B are arbitrary real constants.
Now we change the variable t by x using the formula

$$
\cos 2 t=\frac{1-\tan ^{2} t}{1+\tan ^{2} t}, \quad \sin 2 t=\frac{2 \tan t}{1+\tan ^{2} t}
$$

Since $x=\tan t$ we get

$$
\cos 2 t=\frac{1-x^{2}}{1+x^{2}}, \quad \sin 2 t=\frac{2 x}{1+x^{2}}
$$

Then the solution of the original equation is

$$
y=A \frac{1-x^{2}}{1+x^{2}}+B \frac{2 x}{1+x^{2}}
$$

Answer: $y=A \frac{1-x^{2}}{1+x^{2}}+B \frac{2 x}{1+x^{2}}$

