Answer on Question \#66476, Math / Calculus.

Use the mean value theorem to show that x is smaller than \sin inverse x for x is greater than 0

Solution:

We will use the mean value theorem: if a function f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b), then there exists a point $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

Consider the function $f(x)=\sin x$ and the closed interval $[0, x]$ for $x>0$. Since the function $f(x)=\sin x$ is differentiable, there is a point $c \in(0, x)$ such that

$$
\frac{\sin x-\sin 0}{x-0}=\cos c .
$$

Then

$$
\frac{\sin x}{x}=\cos c .
$$

Since $\cos x \leq 1$,

$$
\frac{\sin x}{x} \leq 1 .
$$

Therefore $\sin x \leq x$ for $x>0$. By the condition $\frac{\sin x}{x}=\cos c$ we have that $\sin =x$ when $\cos c=1$. For $x>0$ and $c \in(0, x)$ we have that $\cos c=1$ for $c \geq 2 \pi$. Since $x>c$, $x>2 \pi$. But $\sin x \leq 1$ for every x. Then by conditions $\sin x \leq 1$ and $x>2 \pi$ we have that $\sin x<x$.

Hence $\sin x<x$ for $x>0$.
Answer provided by https://www.AssignmentExpert.com

