Answer on Question \#66471, Math / Calculus

A certain lot is in the shape of a parabola bounded by a slant line. The parabola is defined by the equation $y=x^{2}-2$ and the line at $y=x$. If the lot is bounded by the coordinates at $x=2$ and $x=-1$ then what is the area of the lot?

Solution

Find the area of the lot
Area $=\int_{-1}^{3}\left(x-\left(x^{2}-2\right)\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}+2 x\right)\right|_{-1} ^{3}=$
$=\left(\frac{(3)^{2}}{2}-\frac{(3)^{3}}{3}+2(3)\right)-\left(\frac{(-1)^{2}}{2}-\frac{(-1)^{3}}{3}+2(-1)\right)=\frac{8}{3}\left(\right.$ units $\left.^{2}\right)$
Answer: the area of the lot equals $8 / 3$ square units.
Answer provided by https://www.AssignmentExpert.com

