Answer on Question 66455 - Math - Differential Equations

The initial value problem

$$
\frac{d y}{d x}=x^{2}+y^{2}, \quad y(0)=0
$$

has a unique solution in some interval of the form $-h<x<h$.
Solution The well-known existence and uniqueness theorem states: if the right-hand $f(x, y)$ of the differential equation $y^{\prime}=f(x, y)$ is a continuously differentiable function on some domain Ω, then for any initial data $\left(x_{0}, y_{0}\right) \in \Omega$ we can find a neighbourhood $\left[x_{0}-h, x_{0}+h\right]$ in which there exists an unique solution $y=y(x)$ of the equation such that $y\left(x_{0}\right)=y_{0}$.

In our case we have $f(x, y)=x^{2}+y^{2}, x_{0}=0, y_{0}=0$. The function f is continuously differentiable in \mathbb{R}^{2}, since its partial derivatives

$$
\frac{\partial f}{\partial x}(x, y)=2 x, \quad \frac{\partial f}{\partial y}(x, y)=2 y
$$

are continuous functions in \mathbb{R}^{2}. Therefore the initial problem

$$
\begin{equation*}
\frac{d y}{d x}=x^{2}+y^{2}, \quad y(0)=0 \tag{1}
\end{equation*}
$$

has a unique solution in an interval $-h<x<h$ with some positive h. In addition, we can find the concrete number h with such property. For instance, we consider the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x| \leq a, \quad|y| \leq b\right\}
$$

and set

$$
M=\max _{(x, y) \in R}|f(x, y)| .
$$

It is known that then a solution of (1) exists in the interval $-h<x<h$, where

$$
h=\min \left\{a, \frac{b}{M}\right\}
$$

We have

$$
M=\max _{(x, y) \in R}\left(x^{2}+y^{2}\right)=a^{2}+b^{2} \quad \Rightarrow \quad h=\min \left\{a, \frac{b}{a^{2}+b^{2}}\right\}
$$

Set $a=1$ and $b=1$. Then $h=\min \{1,0.5\}=0.5$. Hence, we can state that the solution $y=y(x)$ of (1) exists in the interval $-0.5<x<0.5$.

Answer: The statement is true. There exists an unique solution $y=y(x)$ of (1) in the interval $-0.5<x<0.5$.

