## Answer on Question \#66446-Math-Algebra <br> Question

$\frac{1 \cdot 2+2 \cdot 3+\ldots+n(n+1)}{n(n+3)} \geq \frac{(n+1)}{4}$, for $n>1$.

## Solution

First prove that
$1 \cdot 2+2 \cdot 3+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
Consider the proof of (2) by mathematical induction.

1. Basis of the induction

Show that the statement (2) holds for $n=1$ :
the left-hand side is $1 \cdot 2=2$,
the right-hand side is $\frac{1 \cdot 2 \cdot 3}{3}=2$, hence $2=2$ is true.
2. Induction hypothesis

Assume that the statement (2) holds for $n=k, \mathrm{k}>1$ :
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)=\frac{k(k+1)(k+2)}{3}$.
3. Induction step.

It must then be shown that the statement (2) holds for $n=k+1$, that is,
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)+(k+1)(k+1+1)=\frac{(k+1)(k+1+1)(k+1+2)}{3}$,
i.e.
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$.
Consider the left-hand side of (4):
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)+(k+1)(k+2)=\{$ using the (3) for the first $k$ terms $\}=$
$=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)=\{$ taking out the common multipliers $(k+1),(k+2)\}=$
$=(k+1)(k+2)\left(\frac{k}{3}+1\right)=(k+1)(k+2)\left(\frac{k+3}{3}\right)=\frac{(k+1)(k+2)(k+3)}{3}$, we deduced to right-
hand side of (4).
Thus from the assumption that formula (2) is true for $n=k$, we get that it is also true for $n=k+1$
4. According to the principle of mathematical induction, formula (2) is proved for all natural numbers.
According to the formula (2), we get that the left-hand side of (1) :
$\frac{1 \cdot 2+2 \cdot 3+\ldots+n(n+1)}{n(n+3)}=\frac{n(n+1)(n+2)}{3 n(n+3)}=\frac{(n+1)(n+2)}{3(n+3)}$,
so instead (1) prove the inequality $\frac{(n+1)(n+2)}{3(n+3)}>\frac{(n+1)}{4}$ for $n>1$.
Note that

$$
\begin{equation*}
\frac{(n+1)(n+2)}{3(n+3)}-\frac{(n+1)}{4}=(n+1)\left(\frac{(n+2)}{3(n+3)}-\frac{1}{4}\right)=(n+1)\left(\frac{4(n+2)-3(n+3)}{12(n+3)}\right)= \tag{5}
\end{equation*}
$$

$=(n+1)\left(\frac{4 n+8-3 n-9}{12(n+3)}\right)=(n+1)\left(\frac{n-1}{12(n+3)}\right)>0 \quad$ for $n>1$,
so (5) is true, and formula (1) is proved.
Answer provided by https://www.AssignmentExpert.com

