Answer on Question \#66374 - Math - Linear Algebra

Which of the following sets are convex? Give reason.

Question

$$
\begin{equation*}
A=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \leq 1 ; x_{1}, x_{2} \geq 0\right\} \tag{i}
\end{equation*}
$$

Solution

We recall the definition of the convex set. A set C is convex if for any $u, v \in C$ the point $\theta u+$ $(1-\theta) v \in C$ for all $\theta \in[0,1]$.

Let $u, v \in A$ and $\theta \in[0,1]$. The vector $u=\left(u_{1}, u_{2}\right)$ is such that $0 \leq u_{1} \leq 1$ and $0 \leq u_{2} \leq 1$ and, correspondingly, the vector $v=\left(v_{1}, v_{2}\right)$ is such that $0 \leq v_{1} \leq 1$ and $0 \leq v_{2} \leq 1$.

We have to prove that the vector $\theta u+(1-\theta) v=\left(\theta u_{1}+(1-\theta) v_{1}, \theta u_{2}+(1-\theta) v_{2}\right) \in A$ for all $\theta \in[0,1]$.

Indeed, for $i=1$ and $i=2: \theta u_{i}+(1-\theta) v_{i} \geq 0$ since $u_{i} \geq 0, v_{i} \geq 0, \theta \in[0,1]$ and $\theta u_{i}+$ $(1-\theta) v_{i} \leq \theta+(1-\theta)=1$ since $u_{i} \leq 1, v_{i} \leq 1, \theta \in[0,1]$. Therefore, $\theta u+(1-\theta) v \in A$ for all $\theta \in[0,1]$ and A is a convex set.

Answer: Convex.

Question

(ii) $\quad B=\left\{\left(x_{1}, x_{2}\right): x_{2}-3 \geq x_{1}^{2} ; x_{1}, x_{2} \geq 0\right\}$

Solution

Let us recall that translation preserves convexity of the set. See, for example https://web.stanford.edu/class/ee364a/lectures/sets.pdf

Therefore we translate the set B by vector $(0,-3)$. We come to the set $B^{\prime}=\left\{\left(x_{1}, x_{2}\right): x_{2} \geq\right.$ $\left.x_{1}^{2} ; x_{1}, x_{2} \geq 0\right\}$. Let's prove that B^{\prime} is convex.

Let $u, v \in B^{\prime}$ and $\theta \in[0,1]$. We have to prove that the vector $\theta u+(1-\theta) v=\left(\theta u_{1}+\right.$ $\left.(1-\theta) v_{1}, \theta u_{2}+(1-\theta) v_{2}\right) \in B^{\prime}$ for all $\theta \in[0,1]$.

Let us consider the inequality:

$$
\theta u_{1}^{2}+(1-\theta) v_{1}^{2} \geq\left(\theta u_{1}+(1-\theta) v_{1}\right)^{2}
$$

The following are equivalent:

$$
\begin{gathered}
\theta u_{1}^{2}+(1-\theta) v_{1}^{2} \geq\left(\theta u_{1}+(1-\theta) v_{1}\right)^{2} \\
\theta u_{1}^{2}+(1-\theta) v_{1}^{2} \geq \theta^{2} u_{1}^{2}+2 \theta(1-\theta) u_{1} v_{1}+(1-\theta)^{2} v_{1}^{2} \\
0 \geq\left(\theta^{2}-\theta\right) u_{1}^{2}-2\left(\theta^{2}-\theta\right) u_{1} v_{1}+\left[(1-\theta)^{2}-(1-\theta)\right] v_{1}^{2}
\end{gathered}
$$

$$
\begin{gathered}
0 \geq\left(\theta^{2}-\theta\right) u_{1}^{2}-2\left(\theta^{2}-\theta\right) u_{1} v_{1}+\left(\theta^{2}-\theta\right) v_{1}^{2} \\
0 \geq\left(\theta^{2}-\theta\right)\left(u_{1}-v_{1}\right)^{2}
\end{gathered}
$$

The final inequality is true for all θ if $u_{1}=v_{1}$, and if $u_{1} \neq v_{1}$, then the final inequality holds exactly when $\theta \in[0,1]$.

It means that for all $\theta \in[0,1]$ and $u, v \in B^{\prime}$ we have

$$
\left(\theta u_{1}+(1-\theta) v_{1}\right)^{2} \leq \theta u_{1}^{2}+(1-\theta) v_{1}^{2} \leq \theta u_{2}+(1-\theta) v_{2} .
$$

Therefore, $\theta u+(1-\theta) v \in B^{\prime}$ for all $\theta \in[0,1]$. Then B^{\prime} and B, correspondingly, are convex.
Answer: Convex.

