Answer on Question \#66355 - Math - Statistics and Probability

Question
Work out the Spearman's rank correlation.

Student	Q.T.	M.A.
A	2	3
B	7	6
C	6	4
D	1	2
E	4	5
F	3	1
G	5	8
H	8	7

Solution

Since all the data in columns consists of distinct integers, we can compute Spearman's rank correlation coefficient using the following formula:

$$
\rho=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)^{2}},
$$

where $d_{i}=r g\left(x_{i}\right)-r g\left(y_{i}\right)$ is the difference between two ranks (measure of order) of each observation, n is number of observations. In our case ranks coincide with observations, so we'll just sort data by Q.T. for clarity. Then we compute d and d^{2}.

Student	Q.T. $=r g(x)$	M.A. $=r g(y)$	d	d^{2}
D	1	2	-1	1
A	2	3	-1	1
F	3	1	2	4
E	4	5	-1	1
G	5	8	-3	9
C	6	4	2	4
B	7	6	1	1
H	8	7	1	1

Finally, we substitute obtained values into the formula:

$$
\rho=1-\frac{6(1+1+4+1+9+4+1+1)}{8\left(8^{2}-1\right)}=\frac{31}{42} \approx 0.7381
$$

Answer: $\rho=\frac{31}{42} \approx 0.7381$.

