Answer on Question 66341 - Math - Differential Equations

Find the temperature in a bar of length L with both ends insulated and with initial temperature in the rod being $\sin \frac{\pi x}{L}$.

Solution: We consider the initial boundary value problem for the heat equation

$$u_t = a^2 u_{xx}, \qquad x \in (0, L), \quad t > 0,$$
 (1)

$$u(0,x) = \sin\frac{\pi x}{L},\tag{2}$$

$$u_x(t,0) = u_x(t,L) = 0.$$
 (3)

We look for a specific type of solution; namely, a product of a function of t only and a function of x only:

$$v(t,x) = T(t)X(x).$$

We substitute this function v into the differential equation (1), and divide by a^2v . This gives

$$\frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)}.$$

The left-hand side of this equality depends only upon t. The right-hand side is independent of t. It follows that

$$\frac{X''(x)}{X(x)} = -\lambda,$$

where λ is a constant. Then

$$\frac{T'(t)}{a^2T(t)} = -\lambda.$$

Thus v(t, x) = T(t)X(x) is a solution of the heat equation that satisfies boundary conditions (3) if and only if T and X satisfy the ordinary differential equation

$$T'(t) + \lambda a^2 T(t) = 0, \qquad t \in (0, +\infty)$$
(4)

and the boundary value problem

$$X''(x) + \lambda X(x) = 0, \quad x \in (0, L),$$
 (5)

$$X'(0) = 0, \quad X'(L) = 0.$$
 (6)

respectively. Since we wish to have $u_x = 0$ for x = 0 and x = L, we only consider those solutions of the last equation which also satisfy conditions (6).

This homogeneous problem always has the trivial solution X = 0, but this is of no use to us. We are interested in cases where this is not the only solution. It is possible for non-negative λ only.

If $\lambda = 0$, then there exists a nonzero solution $X_0 = 1$ of (5), (6). For $\lambda > 0$ we have $X(x) = C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x$. Substituting X into (6) yields

$$X'(x) = -C_1\sqrt{\lambda}\sin\sqrt{\lambda}x + C_2\sqrt{\lambda}\cos\sqrt{\lambda}x;$$

$$X'(0) = 0 \quad \Rightarrow \quad C_2 = 0;$$

$$X'(L) = 0 \quad \Rightarrow \quad C_1\sqrt{\lambda}\sin\sqrt{\lambda}L = 0 \quad \Rightarrow \quad \sin\sqrt{\lambda}L = 0.$$

since both the constants C_1 and C_2 cannot be zero simultaneously. Then X need not be identically zero if and only if $\sin \sqrt{\lambda} L = 0$, that is, if

$$\lambda_n = \frac{\pi^2 n^2}{L^2}, \qquad n = 1, 2, \dots.$$

These values are called the eigenvalues of the problem. The corresponding solutions are

$$X_n(x) = \cos \frac{\pi nx}{L}, \qquad n = 1, 2, \dots$$

Next, we can solve equation (4) for all eigenvalues:

$$T_0' = 0 \implies T_0(t) = A_0;$$

 $T_n' + \frac{a^2 \pi^2 n^2}{L^2} T_n = 0 \implies T_n(t) = A_n e^{-\frac{a^2 \pi^2 n^2}{L^2} t}.$

We attempt to represent the solution u of (1)–(3) as an infinite series

$$u(t,x) = A_0 + \sum_{n=1}^{\infty} A_n e^{-\frac{a^2 \pi^2 n^2}{L^2} t} \cos \frac{\pi nx}{L}.$$

We need to determine the coefficients A_n in such a way that initial condition (2) holds. We have

$$u(0,x) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{\pi nx}{L} = \sin \frac{\pi x}{L}.$$

The last series is called a Fourier series of function $\sin \frac{\pi x}{L}$. Moreover,

$$A_0 = \frac{1}{L} \int_0^L \sin \frac{\pi x}{L} dx, \qquad A_n = \frac{2}{L} \int_0^L \sin \frac{\pi x}{L} \cos \frac{\pi nx}{L} dx.$$

$$A_0 = \int_0^L \sin \frac{\pi x}{L} dx = \frac{L}{\pi} \int_0^L \sin \frac{\pi x}{L} d\left(\frac{\pi x}{L}\right) = -\frac{L}{\pi} \cos \frac{\pi x}{L} \Big|_0^L = \frac{2L}{\pi}.$$

$$\begin{split} A_n &= \int_0^L \sin\frac{\pi x}{L} \cos\frac{\pi n x}{L} dx = \frac{1}{2} \int_0^L \left(\sin\frac{\pi (n+1)x}{L} + \sin\frac{\pi (n-1)x}{L} \right) dx \\ &= \frac{1}{2} \left(\frac{L}{\pi (n+1)} \int_0^L \sin\frac{\pi (n+1)x}{L} d\left(\frac{\pi (n+1)x}{L} \right) \right. \\ &+ \frac{L}{\pi (n-1)} \int_0^L \sin\frac{\pi (n-1)x}{L} d\left(\frac{\pi (n-1)x}{L} \right) \right) \\ &= \frac{1}{2} \left(-\frac{L}{\pi (n+1)} \cos\frac{\pi (n+1)x}{L} \Big|_0^L - \frac{L}{\pi (n-1)} \cos\frac{\pi (n-1)x}{L} \Big|_0^L \right) \\ &= (1 - (-1)^{n+1}) \left(\frac{L}{\pi (n+1)} + \frac{L}{\pi (n-1)} \right) = \frac{2(1 - (-1)^{n+1})nL}{\pi (n^2 - 1)} \\ &= \begin{cases} \frac{8kL}{\pi (4k^2 - 1)} & \text{if } n = 2k \\ 0 & \text{if } n = 2k - 1 \end{cases} \end{split}$$

Answer:

$$u(t,x) = \frac{2L}{\pi} + \sum_{k=1}^{\infty} \frac{8kL}{\pi(4k^2 - 1)} e^{-\frac{4a^2\pi^2k^2}{L^2}t} \cos\frac{2\pi kx}{L}.$$