Answer on Question \#66340 - Math - Differential Equations

Question

Using the method of separation of variables, solve

$$
u_{x t}=e^{-t} \cos x
$$

when

$$
\begin{gathered}
u(x, 0)=0 \\
\frac{\partial u}{\partial t}(0, t)=0
\end{gathered}
$$

Solution

We shall search for the solution of (i) in the following form:

$$
u(x, t)=X(x) T(t)
$$

Substituting it in the equation (i) and the initial conditions we obtain

$$
\begin{gathered}
X^{\prime}(x) T^{\prime}(t)=e^{-t} \cos x \\
X(x) T(0)=0, \quad X(0) T^{\prime}(t)=0
\end{gathered}
$$

We remark that $X(x) \neq 0$, because $u(x, t)$ with $X=0$ is not a solution of the equation. Therefore, $T(0)=0$. Further, $T^{\prime}(t)$ cannot be equal to zero, since it contradicts the equation

$$
X^{\prime}(x) T^{\prime}(t)=e^{-t} \cos x
$$

Therefore,

$$
X(0)=0
$$

So we obtain two initial value problems:

$$
X^{\prime}(x)=\cos x, \quad X(0)=0
$$

and

$$
\begin{equation*}
T^{\prime}(t)=e^{-t}, T(0)=0 \tag{2}
\end{equation*}
$$

Solving the problem (1) we obtain

$$
\begin{gathered}
X^{\prime}(x)=\cos x \\
X(x)=\sin x+C_{1} . \\
X(0)=C_{1}=0 .
\end{gathered}
$$

So, $X(x)=\sin x$ is a solution of the problem (1).
Solving the problem (2) we obtain

$$
\begin{gathered}
T^{\prime}(t)=e^{-t} \\
T(t)=-e^{-t}+C_{2} \\
T(0)=-1+C_{2}=0 \rightarrow C_{2}=1
\end{gathered}
$$

Then

$$
T(t)=-e^{-t}+1
$$

is a solution of the problem (2).
Therefore, the solution of the original problem (i) satisfying the initial conditions is

$$
u(x, t)=X(x) T(t)=\left(1-e^{-t}\right) \sin x=-e^{-t} \sin x+\sin x
$$

Answer: $u(x, t)=-e^{-t} \sin x+\sin x$.

