Answer on Question \#65904 - Math - Trigonometry

Question

There is a tower the angle of elevation from the point ' A ' which is situated South of the tower is 30°. And angle of elevation of the tower from point ' B ' which is to the West of point ' A ' is 18°.

If $A B=a$
Find the height of tower using 'a'. $\quad\left(\sin 18^{\circ}=(\sqrt{ } 5-1) / 4\right)$.

Solution

Consider these pictures:

Let h be the height of tower, $|\mathrm{AT}|=b,|\mathrm{BT}|=c$.
According to Pythagorean theorem, $a^{2}+b^{2}=c^{2}$.

At the same time $\cot 30^{\circ}=\frac{b}{h}$ and $\cot 18^{\circ}=\frac{c}{h}$. Therefore $b=h \cot 30^{\circ}$ and $c=h \cot 18^{\circ}$.
$a^{2}+\left(h \cot 30^{\circ}\right)^{2}=\left(h \cot 18^{\circ}\right)^{2} \Rightarrow a^{2}=h^{2}\left(\cot ^{2} 18^{\circ}-\cot ^{2} 30^{\circ}\right) \Rightarrow$
$h=\frac{a}{\sqrt{\cot ^{2} 18^{\circ}-\cot ^{2} 30^{\circ}}}=\frac{a}{\sqrt{\cot ^{2} 18^{\circ}-(\sqrt{3})^{2}}}$
$\cot ^{2} 18^{\circ}=\frac{1}{\left(\sin 18^{\circ}\right)^{2}}-1=\frac{1}{\left(\frac{\sqrt{5}-1}{4}\right)^{2}}-1=\frac{16}{(\sqrt{5}-1)^{2}}-1=\frac{16-(\sqrt{5}-1)^{2}}{(\sqrt{5}-1)^{2}}=\frac{10+2 \sqrt{5}}{(\sqrt{5}-1)^{2}}$
$h=\frac{a}{\sqrt{\frac{10+2 \sqrt{5}}{(\sqrt{5}-1)^{2}}-3}}=\frac{a(\sqrt{5}-1)}{\sqrt{10+2 \sqrt{5}-3(\sqrt{5}-1)^{2}}}=\frac{a(\sqrt{5}-1)}{\sqrt{8(\sqrt{5}-1)}}=\frac{\sqrt{\sqrt{5}-1}}{2 \sqrt{2}} a$

Answer: $\frac{\sqrt{\sqrt{5}-1}}{2 \sqrt{2}} a$

