Problem #6579. The growth of a \$40 000 investment is shown in the table. Time (years) Value (\$) 0 40 000

 $1\ 42\ 600$

 $2\ 45\ 369$

 $3\ 48\ 318$

 $4 \ 51 \ 459$

 $5\ 54\ 803$

Use the exponential regression function to get the function. Round b to the nearest dollar and a to the nearest thousandth.

Solution We are to find such a and b, such that the following equality $V \approx b \cdot a^T$ is the most "precise". This equality is equivalent to $\log V \approx \log b + T \log a$ (we can think about this equality as about standard L_2 Gaussian regression $\log V = \log b + T \log a + \varepsilon$, where ε are Gaussian errors). Using standard formulas for the estimation of intercept and slope: $\widehat{\log a} = \frac{\cos(\log V, T)}{S^2(T)} = 0.03$ and $\widehat{\log b} = \overline{\log V} - \overline{T} \cdot \widehat{\log a} = 4.6$ (here \widehat{A} denotes mean of the sample A, $\cos(A, B)$ denotes the covariance of samples A and B). Hence $a = 10^{0.03} \approx 1.0715$ and $b \approx 10^{4.6} \approx 39810.71$.

Answer $V = 39810.71 \cdot 1.0715^T$ or if we round $V = 39811 \cdot 1.072^T$.