Problem $\# \mathbf{6 5 7 9}$. The growth of a $\$ 40000$ investment is shown in the table.
Time (years) Value (\$) 040000
142600
245369
348318
451459
554803
Use the exponential regression function to get the function. Round b to the nearest dollar and a to the nearest thousandth.
Solution We are to find such a and b, such that the following equality $V \approx b \cdot a^{T}$ is the most "precise". This equality is equivalent to $\log V \approx \log b+T \log a$ (we can think about this equality as about standard L_{2} Gaussian regression $\log V=\log b+T \log a+\varepsilon$, where ε are Gaussian errors). Using standard formulas for the estimation of intercept and slope: $\widehat{\log a}=\frac{\operatorname{cov}(\log V, T)}{S^{2}(T)}=0.03$ and $\widehat{\log b}=\widehat{\log V}-\bar{T} \cdot \widehat{\log a}=4.6$ (here \widehat{A} denotes mean of the sample $A, \operatorname{cov}(A, B)$ denotes the covariance of samples A and $B)$. Hence $a=10^{0.03} \approx 1.0715$ and $b \approx 10^{4.6} \approx 39810.71$.
Answer $V=39810.71 \cdot 1.0715^{T}$ or if we round $V=39811 \cdot 1.072^{T}$.

