Answer on Question \#65691 - Math - Linear Algebra

Question

Let V be the vector space of 2×2 matrices over R. Check whether the subsets
$W 1=\{(a, 1),(0,-a) \mid a \in R\}$ and $W 2=\{(a,-a),(0, b) \mid a, b \in R\}$ are subspaces over R. For those sets which are subspaces, find their dimension and a basis over R.

Solution

We use the criterion subspace linear space.
Let $A=\left(\begin{array}{cc}a & 1 \\ 0 & -a\end{array}\right) \in W_{1}$ and $B=\left(\begin{array}{cc}b & 1 \\ 0 & -b\end{array}\right) \in W_{1}$.
Because $A+B=\left(\begin{array}{cc}a+b & 2 \\ 0 & -a-b\end{array}\right) \notin W_{1}$, then W_{1} is not a subspace.
Let $A=\left(\begin{array}{cc}a & -a \\ 0 & b\end{array}\right) \in W_{2}, B=\left(\begin{array}{cc}c & -c \\ 0 & d\end{array}\right) \in W_{2}$ and $\alpha, \beta \in \mathbb{R}$.
Because $\alpha A+\beta B=\left(\begin{array}{cc}\alpha a+\beta c & -(\alpha a+\beta c) \\ 0 & \alpha b+\beta d\end{array}\right) \in W_{2}$, then W_{2} is a subspace.
Using the definitions of basis and dimension one gets that the set of vectors $\left\{\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is the basis of W_{2} and $\operatorname{dim}_{\mathbb{R}} W_{2}=2$.

Answer: W_{1} is not a subspace; W_{2} is a subspace; $\left\{\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is the basis of W_{2}; $\operatorname{dim}_{\mathbb{R}} W_{2}=2$.

