Answer on Question \#65598-Math - Statistics and Probability

Question: For the random variable X with the following probability density function
$f(x)= \begin{cases}2 e^{-2 x}, & 0 \geq x_{;} \\ 0, & 0<x\end{cases}$
find
i) $P\{|X-\mu|>1\}$;
ii) Use Chebyshev's inequality to obtain an upper bound on $P\{|X-\mu|>1\}$ and compare with the result in (i).

Solution: First of all the function f is not probability density function for any random variable X.
Indeed,
$\int_{-\infty}^{+\infty} f(x) d x=\int_{-\infty}^{0} 2 e^{-2 x} d x=\int_{-\infty}^{0} e^{-2 x} d(2 x)=-\left.e^{-2 x}\right|_{-\infty} ^{0}=+\infty \neq 1$.

Therefore, the correct probability density function (pdf) should be define as follows:
$f(x)= \begin{cases}2 e^{-2 x}, & x \geq 0 ; \\ 0, & x<0\end{cases}$
or
$f(x)= \begin{cases}2 e^{2 x}, & 0 \geq x ; \\ 0, & 0<x\end{cases}$
I will consider the first function
$f(x)= \begin{cases}2 e^{-2 x}, & x \geq 0 ; \\ 0, & x<0,\end{cases}$
which is a probability density function of the exponential distribution.
The expectation for X is equal to
$\mu=\int_{-\infty}^{+\infty} x f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{+\infty} x \cdot 2 e^{-2 x} d x=-\int_{0}^{+\infty} x d\left(e^{-2 x}\right)=-\left(\left.x e^{-2 x}\right|_{0} ^{+\infty}-\int_{0}^{+\infty} e^{-2 x} d x\right) \\
& =-\left(\lim _{x \rightarrow+\infty} \frac{x}{e^{2 x}}-0+\left.\frac{1}{2} e^{-2 x}\right|_{0} ^{+\infty}\right)=0-\frac{1}{2}\left(\lim _{x \rightarrow+\infty} e^{-2 x}-1\right)=-\frac{1}{2}(0-1)=\frac{1}{2}
\end{aligned}
$$

$$
P\{|X-\mu|>1\}=P(\{X>\mu+1\} \cup\{X<\mu-1\})=P\left(\left\{X>\frac{3}{2}\right\} \cup\left\{X<-\frac{1}{2}\right\}\right)=
$$

i)
$\int_{3 / 2}^{+\infty} 2 e^{-2 x} d x+\int_{-\infty}^{-1 / 2} 0 d x=\int_{3 / 2}^{+\infty} e^{-2 x} d(2 x)=-\left.e^{-2 x}\right|_{\frac{3}{2}} ^{+\infty}=e^{-2-\frac{3}{2}}=e^{-3}$
ii) By Chebyshev's inequality we have $P\{|X-\mu|>1\} \leq \frac{\operatorname{Var}[X]}{1^{2}}=\operatorname{Var}[X]$.

Let us calculate the variance $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$.
$E\left[X^{2}\right]=\int_{-\infty}^{+\infty} x^{2} \cdot f(x) d x=\int_{0}^{+\infty} x^{2} \cdot 2 e^{-2 x} d x=-\int_{0}^{+\infty} x^{2} d\left(e^{-2 x}\right)=-\left(\left.x^{2} e^{-2 x}\right|_{0} ^{+\infty}-\right.$
$\left.\int_{0}^{+\infty} e^{-2 x}=2 x d x\right)=\int_{0}^{+\infty} e^{-2 x}=2 x d x=\frac{1}{2}$
$\operatorname{Var}[X]=\frac{1}{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
Hence, $P\{|X-\mu|>1\} \leq 0.25$ by Chebyshev's inequality.

Finally, we have that the exact value of probability $P\{|X-\mu|>1\}$ equals $e^{-3} \approx 0.049787$ and the approximation obtained by Chebyshev's inequality is equal to 0.25 . This gives
$\frac{[0.049787-0.25]}{0.049787}=100 \% \approx 402 \%$ of percent error. In other words, the upper bound is 5 times greater than the exact value of probability.

Answer: $P\{|X-\mu|>1\}=e^{-3} \approx 0.049787, P\{|X-\mu|>1\} \leq 0.25$ by Chebyshev's inequality.

For Chebyshev's inequality see for example
W. Feller, "An introduction to probability theory and its applications", 1, Wiley (1957-1971), P.233, and for pdf and its properties
W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971), P.3-5
https://www.encyclopediaofmath.org/index.php/Feller,_\"An_introduction_to_probability_theory _and_its_applications \%22

