Answer on Question \#65544, Math / Statistics and probability
Find all the basic solutions of the following system of equations:

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=14 \\
3 x_{1}+x_{2}+x_{3}=12
\end{array}\right.
$$

Which of these solutions are basic feasible solutions?
Solution
Definition Basic Solution: A solution obtained by setting exactly $n-m$ variables to zero provided the determinant formed by the columns associated to the remaining m variables is non-zero is called Basic Solution.

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=14 \\
3 x_{1}+x_{2}+x_{3}=12
\end{array}\right.
$$

$[A, b]=\left[\begin{array}{llll}1 & 2 & 1 & 14 \\ 3 & 1 & 1 & 12\end{array}\right]$

$$
R_{2} \rightarrow R_{2}-(3) R_{1}
$$

$\left[\begin{array}{cccc}1 & 2 & 1 & 14 \\ 0 & -5 & -2 & -30\end{array}\right]$

$$
R_{2} \rightarrow R_{2} /(-5)
$$

$\left[\begin{array}{cccc}1 & 2 & 1 & 14 \\ 0 & 1 & 2 / 5 & 6\end{array}\right]$

$$
R_{1} \rightarrow R_{1}-(2) R_{2}
$$

$\left[\begin{array}{llll}1 & 0 & 1 / 5 & 2 \\ 0 & 1 & 2 / 5 & 6\end{array}\right]$
Basic solutions
$x_{1}=2, \quad x_{2}=6, \quad x_{3}=0$
$x_{1}=-1, \quad x_{2}=0, \quad x_{3}=15$
$x_{1}=0, \quad x_{2}=2, \quad x_{3}=10$
x is a feasible basic solution if x is basic and $x \geq 0$.
Therefore
$x=(2,6,0)^{T}$ is a basic feasible solution
$x=(-1,0,15)^{T}$ is a basic feasible solution but not feasible
$x=(0,2,10)^{T}$ is a basic feasible solution

