Answer on Question \#65433 - Math | Geometry

1. show that points $A(2,-3), B(5,0), C(2,3)$, and $D(-1,0)$, are the vertices of a square. Lets calculate length of diagonals $B D$ and $A C ; A C=\sqrt{(2-2)^{2}+(3+3)^{2}}=6$;
$B D=\sqrt{(5+1)^{2}+0}=6$ As, two diagonals are equal: quadrangle is square;
2. the distance $(x, 1)$ is 2 square root of 5 units from (2,3), find x

$$
\begin{gathered}
\sqrt{(x-2)^{2}+(1-3)^{2}}=2 \sqrt{5} \\
(x-2)^{2}=16 \\
x-2= \pm 4 \\
x=-2, x=6
\end{gathered}
$$

3. what are the coordinates of the point 3 units from the Y-axis and at distance square root 5 from $(5,3)$?
As the point is 3 units from Y-axis: its x component equals 3 or -3 ;

\[

\]

Answer: $(3,4)$ or $(3,2)$

4. what is the equation of a line through $A(7,-3)$ and perpendicular to the line whose inclination is Arctan 2/3.
Let $y=k_{1} x+b_{1}-$ equation of first line
inclination: $\arctan 2 / 3=>k_{1}=\frac{2}{3}$;
Let $y=k_{2} x+b_{2}$-equation of second line, if line 1 is perpendicular to line $2 ; k_{2}=$ $-\frac{1}{k_{1}}=-\frac{3}{2}$;

$$
\begin{aligned}
& \quad y=-\frac{3}{2} x+b_{2} ; \mathrm{A} \in \text { line } 2 ; \quad \mathrm{y}_{A}=-\frac{3}{2} x_{A}+b_{2} ; \\
& -3=-\frac{3}{2} * 7+b_{2} ; \\
& b_{2}=\frac{15}{2}
\end{aligned}
$$

So, equation of line2: $y=-\frac{\mathbf{3}}{\mathbf{2}} x+\frac{\mathbf{1 5}}{\mathbf{2}}$
5. show that lines $2 x+3 Y-2=0,3 X-2 Y+23=0$ and $X-5 Y=12=0$ are the sides of an isosceles triangle.

Let vector $\vec{a}, \vec{b}, \vec{c}$, parallel to line $1,2,3 ; \vec{a}=(2,3) ; \vec{b}=(3,-2) ; \vec{c}=(1,-5)$ Lets find angles between vector \vec{a}, \vec{c} and \vec{b}, \vec{c};
$\varphi(\vec{a}, \vec{c})=\frac{\vec{a} \vec{c}}{|\vec{a}||\vec{c}|}=\frac{2 * 1-5 * 3}{13 \sqrt{2}}=-\frac{1}{\sqrt{2}} ; \varphi=135^{\circ} ;$
$\varphi(\vec{b}, \vec{c})=\frac{\vec{b} \vec{c}}{|\vec{b}||\vec{c}|}=\frac{3 * 1+2 * 5}{13 \sqrt{2}}=\frac{1}{\sqrt{2}} ; \varphi=45^{\circ} ;$

Angle between vectors a and $\mathbf{c}=135^{\circ}\left(45^{\circ}\right)$
Angle between vectors \mathbf{b} and $\mathbf{c}=45^{\circ}$
As angles between vectors are same, angles between lines are same, so the triangle is isosceles;

