Answer on Question \#65395 - Math - Statistics and Probability

Question: The regression equation of y on x and that of x on y are $8 x-10 y+66=0$ and $40 x-18 y=214$ respectively, and the variance of x is 9 .
i) What are the mean values of x and y ?
ii) Find σy.
iii) Find the coefficient of correlation between x and y.

Solution:

i) Regression equation of y on x :

$$
y-\mu_{y}=r_{x, y} \cdot \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)
$$

and regression equation of x on y :

$$
x-\mu_{x}=r_{x, y} \cdot \frac{\sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right),
$$

where μ_{x} and μ_{y} are mean values of x and y, σ_{x} and σ_{y} are standard deviation of x and y respectively and $r_{x, y}$ is the Pearson's correlation coefficient.

The Pearson's correlation coefficient is defined as $r_{x, y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}}$, where $\operatorname{cov}(x, y)$ is a covariance between two random variables x and y.

Let us solve the given regression equation of y on x with respect to y and the given regression equation of x on y with respect to x. We get $y=0.8 x+6.6$ and $x=0.45 y+5.35$ respectively.

The intercept of the first line $a 1$ is equal to $\mu_{y}-b 1 \cdot \mu_{x}$, where $b 1$ is a slope of the first line. The intercept of the second line $a 2$ is equal to $\mu_{x}-b 2 \cdot \mu_{y}$, where $b 2$ is a slope of the second line. Thus, we come to the system of two equations,

$$
\begin{gathered}
\mu_{y}-0.8 \cdot \mu_{x}=6.6 \\
\mu_{x}-0.45 \cdot \mu_{y}=5.35
\end{gathered}
$$

which determines μ_{x} and μ_{y}.
We solve the first equation with respect to $\mu_{y}: \mu_{y}=0.8 \cdot \mu_{x}+6.6$ and put it in the second equation $\mu_{x}-0.45 \cdot\left(0.8 \cdot \mu_{x}+6.6\right)=5.35$. We solve the last equation:

$$
\begin{gathered}
0.64 \cdot \mu_{x}=8.32 \\
\mu_{x}=13 .
\end{gathered}
$$

Hence, $\mu_{y}=0.8 \cdot 13+6.6=17$.
Answer: $\mu_{x}=13, \mu_{y}=17$.
ii) The slope $b 1$ of the line which corresponds to the solved regression equation of y on x is equal to $\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}$. It is given, that $\sigma_{x}^{2}=\operatorname{Var} x=9$. So, we obtain the equation
$0.8=\frac{\operatorname{cov}(x, y)}{9}$.

Hence, $\operatorname{cov} x, y=9 \cdot 0.8=7.2$.
From the solved regression equation of x on y we get
$0.45=\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}$.
Hence $\sigma_{y}^{2}=\frac{\operatorname{cov}(x, y)}{0.45}=\frac{7.2}{0.45}=16$ and $\sigma_{y}=\overline{16}=4$.
Answer: $\sigma_{y}=4$
iii) The Pearson's correlation coefficient is equal to $r_{x, y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}}=\frac{7.2}{\overline{9} \cdot 4}=0.6$.

Answer: $r_{x, y}=0.6$.
For linear regression see for example
http://onlinestatbook.com/Online Statistics Education.pdf (P.462-467)
http://faculty.cas.usf.edu/mbrannick/regression/regbas.html
http://onlinestatbook.com/2/regression/intro.html.

