Answer on Question \#65386-Math - Statistics and Probability

Question: Let Y, X have joint pdf
$f_{X Y}(x, y)= \begin{cases}4, & 0 \leq x \leq 1,0 \leq y \leq 1 ; \\ 0, \text { otherwise }\end{cases}$
Find $f_{X}(x), f_{Y}(y), f_{X / Y}(x / y), f_{Y / X}(y / x)$, also find $E(X / \mid Y=y)$ and $E(Y / \mid X=x)$.
Solution: First of all the given function is not joint pdf for any random variables Y, X. Indeed, $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f_{X Y}(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{0}^{1} 4 d y\right) d x=4 \cdot 1 \cdot 1=4 \neq 1$.

Therefore, in order to obtain a joint pdf we have to change the constant 4 or the domain $0 \leq x \leq 1,0 \leq y \leq 1$ in the description of $f_{X Y}(x, y)$.
Let us consider such joint pdf
$f_{X Y}(x, y)=\left\{\begin{array}{cc}a, \quad 0 \leq x \leq \frac{1}{\sqrt{a}}, 0 \leq y \leq \frac{1}{\sqrt{a}} ; \\ 0, \text { otherwise, }\end{array}\right.$
where a is an arbitrary positive real number.
The marginal density functions are
$f_{X}(x)=\int_{-\infty}^{+\infty} f_{X Y}(x, y) d y=\int_{0}^{1 / \sqrt{a}} a d y=\left.a y\right|_{0} ^{1 / \sqrt{a}}=\sqrt{a}$, when $0 \leq x \leq \frac{1}{\sqrt{a}}$,
and
$f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X Y}(x, y) d x=\int_{0}^{1 / \sqrt{a}} a d x=\left.a x\right|_{0} ^{1 / \sqrt{a}}=\sqrt{a}$, when $0 \leq y \leq \frac{1}{\sqrt{a}}$.
For $0 \leq y \leq \frac{1}{\sqrt{a}}$
$f_{X / Y}(x / y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}=\frac{a}{\sqrt{a}}=\sqrt{a}$, when $0 \leq x \leq \frac{1}{\sqrt{a}} ;$
otherwise $f_{X / Y}(x / y)=0$.
For $0 \leq x \leq \frac{1}{\sqrt{a}}$
$f_{Y / X}(y / x)=\frac{f_{X Y}(x y)}{f_{X}(x)}=\frac{a}{\sqrt{a}}=\sqrt{a}$, when $0 \leq y \leq \frac{1}{\sqrt{a}} ;$
otherwise $f_{Y / X}(y / x)=0$.
Let us now calculate corresponding conditional expectations
$E(X \mid Y=y)=\int_{-\infty}^{+\infty} x f_{X / Y}(x / y) d x=\int_{0}^{1 / \sqrt{a}} \sqrt{a} \cdot x d x=\left.\sqrt{a} \cdot \frac{x^{2}}{2}\right|_{0} ^{1 / \sqrt{a}}=\frac{1}{2 \sqrt{a}}$, when $0 \leq y \leq \frac{1}{\sqrt{a}}$.
$E(Y \mid X=x)=\int_{-\infty}^{+\infty} y f_{Y / X}(y / x) d y=\int_{0}^{1 / \sqrt{a}} \sqrt{a} \cdot y d y=\left.\sqrt{a} \cdot \frac{y^{2}}{2}\right|_{0} ^{1 / \sqrt{a}}=\frac{1}{2 \sqrt{a}}$, when $0 \leq x \leq \frac{1}{\sqrt{a}}$.
Answer: For a joint pdf
$f_{X Y}(x, y)=\left\{\begin{array}{cc}a, \quad 0 \leq x \leq \frac{1}{\sqrt{a}}, 0 \leq y \leq \frac{1}{\sqrt{a}} ; \\ 0, \text { otherwise },\end{array}\right.$
$f_{X}(x)=\left\{\begin{array}{c}\sqrt{a}, 0 \leq x \leq \frac{1}{\sqrt{a}}, \\ 0, \text { otherwise } ;\end{array} \quad f_{Y}(y)=\left\{\begin{array}{c}\sqrt{a}, 0 \leq y \leq \frac{1}{\sqrt{a}}, \\ 0, \text { otherwise } ;\end{array}\right.\right.$

For $0 \leq y \leq \frac{1}{\sqrt{a}} f_{X / Y}(x / y)=\left\{\begin{array}{c}\sqrt{a}, 0 \leq x \leq \frac{1}{\sqrt{a}}, \\ 0, \text { otherwise; }\end{array}\right.$ and $E(X \mid Y=y)=\frac{1}{2 \sqrt{a}} ;$
For $0 \leq x \leq \frac{1}{\sqrt{a}} f_{Y / X}(y / x)=\left\{\begin{array}{c}\sqrt{a}, 0 \leq y \leq \frac{1}{\sqrt{a}}, \text { and } E(Y \mid X=x)=\frac{1}{2 \sqrt{a}} \text {. } . \text {. } 0 \text { otherwise; }\end{array}\right.$
For marginal density function, conditional density function and conditional expectation see for example W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971), P.66-67 and 71-72. https://www.encyclopediaofmath.org/index.php/Feller, \%22An_introduction_to_probability_theory _and_its_applications\%22

Answer provided by AssignmentExpert.com

